
Attribute Grammars and Semantic Analysis Name Analysis

Fundamental Concepts of Name Analysis

• Program Entity: An identifiable entity, e. g. type, function, variable, label, module,
package.

• Identifier: A class of tokens that are used to identify program entities; e. g. minint

• Name: A composite construct used to identify program entities, usually contains
identifiers, e. g. Thread.sleep

• Establishing a Binding
• Explicitly: A definition defines properties of the program entity. There are defining and

applied occurrences of a name.
• Implicitly: There are only applied occurrences of a name. Properties of the program

entity may be defined by the context, e.g. variables in PHP

• Static Binding: A binding is established between a name and a program entity. It is
valid in a certain area of the program text, the scope of the binding. There the
name identifies the program entity. Outside of its scope the name is unbound or
bound to a different entity. Scopes are expressed in terms of program constructs like
blocks, modules, classes, etc..

• Dynamic Binding: Bindings are established at run-time, e. g. in Lisp.

P. Pfahler (upb) PLaC Winter 2016/2017 31 / 53

Attribute Grammars and Semantic Analysis Name Analysis

Scope Rules

P. Pfahler (upb) PLaC Winter 2016/2017 32 / 53



Attribute Grammars and Semantic Analysis Name Analysis

Defining Occurrence before Applied Occurrences

The C rule requires that the defining occurrence of a binding precedes all its applied
occurrences. In Pascal, Modula and Ada the Algol rule holds. However, an additional rule
requires that the defining occurrence of a binding precedes all its applied occurrences.

Consequences

• specific constructs for forward references of functions that call each other recursively:

• forward function declaration in Pascal
• function declaration in C before the function definition

• specific constructs for types which may contain references to each other recursively:
forward type references allowed for pointer types in Pascal, C, Modula.

• specific rules for labels to allow forward jumps:
• label declaration in Pascal before the label definition
• Algol rule for labels in C

• Pascal requires declaration parts to be structured as a sequence of declarations for
constants, types, variables and functions, such that the former may be used in the
latter. Grouping by coherence criteria is not possible.

The Algol rule is simpler, more flexible and allows for individual ordering of definitions
according to design criteria.

P. Pfahler (upb) PLaC Winter 2016/2017 33 / 53

Attribute Grammars and Semantic Analysis Name Analysis

Multiple Definitions

Usually a definition of an identifier is required to be unique in each range. That rule
guarantees that at most one binding holds for a given identifier in a given range.

Deviations from that rule:

• Definitions for the same binding are allowed to be repeated, e. g. in C:
external int maxElement;

• Definitions for the same binding are allowed to accumulate properties of the program
entity, e. g. in LIDO:
SYMBOL AppIdent: key: DefTableKey; ...

SYMBOL AppIdent: type: DefTableKey;

• Separate name spaces for bindings of different kinds of program entities.
Occurrences of identifiers are syntactically distinguished and associated to a specific
name space, e. g. different name spaces in Java for packages and classes:
import Stack.Stack;

• Overloading of identifiers: different program entities are bound to one identifier with
overlapping scopes. They are distinguished by static semantic information in the
context, e. g. overloaded functions distinguished by the signature of the call
(number and types of actual parameters).

P. Pfahler (upb) PLaC Winter 2016/2017 34 / 53



Attribute Grammars and Semantic Analysis Name Analysis

Inherited Bindings

A class provides a set of bindings that consists of the
local bindings and those inherited from classes and
interfaces. An inherited binding may be hidden by a
local definition.

That set of bindings is used for identifying qualified
names:

D d = new D();

d.f();

d.h();

d.g();

A class may be embedded in a context that provides
bindings. In Java an unqualified name like f() is first
tried to be bound in the local and inherited sets, and
then in the bindings of the textual context.

P. Pfahler (upb) PLaC Winter 2016/2017 35 / 53

Attribute Grammars and Semantic Analysis Name Analysis

An Environment Module for Name Analysis

Program entities are represented by keys. They reference descriptions of properties.

The task of name analysis:

Associate the key of a program entity to
each occurrence of an identifier according to
the scope rules of the language.

The pair (identifier, key) represents a binding. Bindings that have a common scope are
composed to sets.

An environment is a linear sequence of sets of bindings e1, e2, e3, ... that are connected
by a hiding relation: a binding (a, k1) in ei hides a binding (a,k2) in ej if i < j .

Name analysis is implemented using a module that implements environments and
operations on them.

P. Pfahler (upb) PLaC Winter 2016/2017 36 / 53



Attribute Grammars and Semantic Analysis Name Analysis

Environment Module: Basic Data Structure

Local
Bindings

Block 0

Block 1

Block 2

a, k1

b, k2

c, k3

a, k4

b, k5

a, k7

c, k8

d, k6

...

Current
Scope

Root
Environment

Block 3

• Tree structure for nested environments

• List of local bindings (Id, Key) in each
environment

• Types
• Environment
• Binding

• Interface functions
• Tree Construction:

NewEnv() , NewScope(Environment)
• Establish binding:

BindIdn(Environment, int)
• Lookup binding:

BindingInEnv(Environment, int)
yields NoBinding if lookup fails.

Looking up a binding requires linear search
through local bindings starting in the
current scope and continuing in enclosing
environments until a binding is found or the
search fails in the root environment

P. Pfahler (upb) PLaC Winter 2016/2017 37 / 53

Attribute Grammars and Semantic Analysis Name Analysis

Environment Module: Efficient Data Structure

Using a stack of bindings for
each identifier in the program.

• Local binding hides global
ones

• No search, O(1) lookup.

Changing the current scope
requires stack adjustment:

• moving towards the root:
pop a set of bindings

• moving towards the
leaves:
push a set of bindings

Local
Bindings

a
b
c

Block 0

Block 1

Block 2

a, k1

b, k2

c, k3

a, k4

b, k5

a, k7

c, k8

d, k6

d

...

Current
Scope

Stack
Vector

Identifier
Stacks

Root
Environment

Block 3

P. Pfahler (upb) PLaC Winter 2016/2017 38 / 53



Attribute Grammars and Semantic Analysis Name Analysis

Name Analysis using Attribute Grammars

Context Symbol Computation

Program Root Root.Env = NewEnv();

Nested Block Range Range.Env = NewScope(INCLUDING (Range.Env,

Root.Env));

Defined Identifier IdDefScope IdDefScope.Bind =

Occurrence BindIdn(INCLUDING Range.Env,

IdDefScope.Symb);

Applied Identifier IdUseEnv IdUseEnv.Bind =

Occurrence BindingInEnv(INCLUDING Range.Env,

IdUseEnv.Symb);

Preconditions for specific scope rules

• Algol rule: all BindIdn() of all surrounding ranges before any BindingInEnv()

• C rule: BindIdn() and BindingInEnv() in textual order

Typical semantic checks

• No applied occurrence without a valid defining occurrence

• At most one definition for an identifier in a range

• No applied occurrence before its defining occurrence (Pascal)

P. Pfahler (upb) PLaC Winter 2016/2017 39 / 53

Attribute Grammars and Semantic Analysis Name Analysis

Attribute Computations for Name Analysis

P. Pfahler (upb) PLaC Winter 2016/2017 40 / 53



Attribute Grammars and Semantic Analysis Name Analysis

Eli Module for Name Analysis

Library modules provides class symbols and computations for name analysis. These
computational roles can be inherited by tree symbols:

Name Analysis for the Basic SetLan Version

~O~<SetLanName.specs~>~{~-

$/Name/CScope.gnrc:inst // we use C-like scope rules

~}

~O~<SetLanName.lido~>~{~-

ATTR Sym: int; // the name’s symbol table index

CLASS SYMBOL IdentOcc COMPUTE SYNT.Sym = TERM; END;

SYMBOL Program INHERITS RootScope END;

SYMBOL VarNameDef INHERITS IdDefScope, IdentOcc END;

SYMBOL VarNameUse INHERITS IdUseEnv, IdentOcc, ChkIdUse END;

~}

This is the complete specification (without checking for multiple definitions). It can
easily be extended for nested scopes and additional identifier occurrences.

P. Pfahler (upb) PLaC Winter 2016/2017 41 / 53


