Attribute Grammars and Semantic Analysis Type Analysis

Fundamental Concepts of Type Analysis

A type characterizes a set of values and the applicable Weak
operations. The language design constrains the way how
values may interact.

Machine
e Strongly typed language: Code
Guarantee that all type constraints can be checked: Static Dynamic
e static typing: at compile time c .
e dynamic typing: at execution time Cos JavaScript
e Weakly typed language: SML Java Schem&
No guarantee that operations are applied to arguments Strong
that make sense. Design Space of Types

We consider Static Type Analysis :

e Programmer declares type property - compiler checks

e Programmer uses typed entities - compiler infers their types and checks (e. g. SML)
Compiler Tasks:

o Keep track of the type of defined entities

e Check correct typing of program constructs, e. g. expressions

P. Pfahler (upb) PLaC Winter 2016,/2017 42 / 53
Attribute Grammars and Semantic Analysis ~ Type Analysis

Typical Type Analysis Tasks

Example C Program

extern int puts(charx);
char *names[] = {"Spring", "Sommer",
"Fall", "Winter"};

int main() {

char i;

for (1 =0; i <4; i=1+ 1)

puts (names[i]) ;
return i;

3

What type-related checks have to be made to guarantee correct typing?

P. Pfahler (upb) PLaC Winter 2016,/2017 43 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Taxonomy of Type Systems in Programming Languages

e Monomorphism : Every entity has only one type.
As a consequence there are different operators for similar operations, e.g.

addII: int x int -> int
addIF: int x float -> float
addFI: float x int -> float
addFF: float x float -> float

e Polymorphism : An entity may belong to several types.
Due to characteristics like coercion, overloading or subtyping all practical
programming languages have a polymorphic type system .

Overloading
Ad Hoc <:

Coercion

Inclusion
Universal <:

Parametric

P. Pfahler (upb) PLaC Winter 2016,/2017 44 / 53

Classification of polymorphism

Polymorphism

Attribute Grammars and Semantic Analysis ~ Type Analysis

Ad Hoc Polymorphism

An ad hoc polymorphic function stands for a small set of different monomorphic
functions.

e Overloading : The same function name or operator can be used in different
contexts to denote different functions.

Example: In C there is one operator for addition + .
It stands for two different functions:

int+: int x int -> int
float+: float x float -> float
e Coercion : A function argument is converted to a type expected by the function.

Example: Artihmetic expression a + b in C.
+ is the overloaded operator as described above. If the two operands are of different
types, the float+ function is invoked after coercing the int operand to a float .

P. Pfahler (upb) PLaC Winter 2016,/2017 45 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Universal Polymorphism 1

An universally polymorphic function works uniformly for an infinite set of types that all
have some common structure.

¢ Inclusion Polymorphism : An entity of a subtype S of T is acceptable where an
entity of type T is acceptable. Notation: S <: T

e Subtype relation established by class hierarchies in OO Languages
e Contravariant method arguments / covariant result types in overriding

T A A
method(): T method(s: S)
L

| |

>

B B ¢
method(): S method(t: T)
Subtyping Covariant Contravariant
return type parameter type
P. Pfahler (upb) PLaC Winter 2016,/2017 46 / 53

Attribute Grammars and Semantic Analysis ~ Type Analysis

Universal Polymorphism 2

e Parametric Polymorphism : the polymorphic function works uniformly on a range
of types. An implicit or explicit type parameter determines the type of arguments for
each use.

e Polytypes in SML and Haskell: type parameters are substituted by type inference
e Generic classes in C++ and Java: type parameters are instanciated explicitly

map: ’a list X (’a -> ’b) -> ’b list template <class A> class calc
{

map([1,2,3], fn i => 2%i); public:

A multiply(A x, A y);

A add(A x, A y);

};

calc<double> dcalc;

P. Pfahler (upb) PLaC Winter 2016,/2017 47 / 53

Attribute Grammars and Semantic Analysis Type Analysis

The Definition Module (Eli Implementation)

Central data structure, stores properties of program entities
e. g. type of a variable, element type of an array type

A program entity is identified by the key of its entry in this data structure.

Operations:
NewKey () yields a new key
ResetP (k, v) sets the property P to have the value v for key k
SetP (k, v, d) as ResetP; but the property is set to d if it has been set before

GetP (k, d) yields the value of the Property P for the key k;
yields the default value d, if P has not been set

Operations are called in tree contexts, dependences control accesses, e. g. SetP before GetP

Implementation of data structure:a property list for every key

Definition module is generated from specifications of the form
Property name : property type;
ElementNumber: int;

Generated functions: ResetElementNumber, SetElementNumber, GetElementNumber
P. Pfahler (upb) PLaC Winter 2016,/2017 48 / 53

Attribute Grammars and Semantic Analysis ~ Type Analysis

Type Analysis of Declarations

Example: Collecting Types of Variable Definitions

/* From the SetLan Specification (simplified) x*/
ATTR Type: DefTableKey;
ATTR TypelsSet: VOID;

RULE: Declaration ::= Type VarNameDef ’;’ COMPUTE
VarNameDef .Type = Type.Type;

END;

RULE: Type ::= ’set’ COMPUTE Type.Type = setType; END;

RULE: Type ::= ’int’ COMPUTE Type.Type = intType; END;

RULE: VarNameDef ::= Identifier COMPUTE

VarNameDef . TypeIsSet = ResetTypeOf (VarNameDef.Key, VarNameDef.Type) ;
END;

Types are represented as definition table keys. setType and intType have been
predefined as keys.

An attribute TypeIsSet at the AST root that depends on all VarNameDef . TypeIsSet
attributes marks the fact that all variable definitions have been registered in the
definition table.

P. Pfahler (upb) PLaC Winter 2016,/2017 49 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Type Analysis of Expressions

An expression node of the AST represents a program construct that yields a value. Two
attributes characterize an expression:

e Type: the type of value delivered by the node
e Required: the type of value required by the context in which the node appears

An expression node n is correctly typed if n.Type is acceptable as n.Required (possibly
causing a type coercion).

/* C Example */ assign

char 1i;

i=1+1; ’//// Required
€ var int
AN [Type

<

JL
Resulting Machine Code
#

expand byte to 32 bits:
movzbl -1(%rbp), %eax

add 32 bits: .
addl $1. %eax var intliteral
use lowest 8 bits: i 1
movb %al, -1(%rbp)

Required

expr int |Required

int [Type

char Type

P. Pfahler (upb) PLaC Winter 2016,/2017 50 / 53
Attribute Grammars and Semantic Analysis ~ Type Analysis

Type Analysis for Expressions

Example: Checking Expression Types

/* From the SetLan Specification (simplified/Pseudocode) */
ATTR Type, Required: DefTableKey;
ATTR TypeIsSet: VOID;
RULE: expr ::= VarNameUse COMPUTE
expr.Type = GetTypeOf (VarNameUse.Key, ErrorType)
DEPENDS_ON INCLUDING ROOT.TypelsSet;

END;
RULE: expr ::= Number COMPUTE
expr.Type = intType;
END;
RULE: expr ::= expr ’+’ expr COMPUTE
expr [1] .Type =
if expr[2].Type == expr[3].Type == intType then intType
else if expr[2].Type == expr[3].Type == setType then setType

else ErrorType;
expr [2] .Required = expr[3].Required = expr[1].Type;
if expr[1].Type !'= expr[1].Required then message("Type Mismatch");
END;

v
P. Pfahler (upb) PLaC Winter 2016,/2017 51 / 53

Attribute Grammars and Semantic Analysis ~ Semantic Error Handling

Semantic Error Handling

Error reports must refer to the source code:

e Any explicit or implicit requirement of the language definition needs to be checked,

e. g. if (IdUse.Bind == NoBinding) message (...)

Checks have to be associated to the smallest relevant context. Necessary
information must be propagated to that context.
Not helpful: “Some arguments have wrong types”

Meaningfull and expressive error reports.
Not helpful: “Type error”

Different reports for different violations; do not connect symptoms by or.

All operations specified for the tree are executed, even if errors occur:
e Introduce error values, e. g. NoKey, NoType, NoOpr.
e Operations that yield results must yield a reasonable one in case of error.
e Operations have to accept error values as parameters.

e Avoid messages for avalanche errors by suitable extension of relations e. g. every
type is compatible with NoType.

P. Pfahler (upb) PLaC Winter 2016,/2017 52 / 53

Attribute Grammars and Semantic Analysis ~ Semantic Error Handling

Error Handling Examples

C Code (gcc 4.8) Java Code (javac 1.8)
void f(void); class Try {
void £() {
void £() { char i;
char i; i=1+73;
i=1+j; £(7);
£(7); }
b b
try.c: In function ’f’: Try.java:4:
try.c:5:12: error: cannot find symbol
error: ’j’ undeclared symbol: variable j
try.c:6:4: Try.java:b:
error: too many arguments error: method f in class Try cannot

to function °’f’

P. Pfahler (upb)

PLaC

be applied to given types
required: no arguments
found: int
reason: actual and formal
argument lists differ in length

Winter 2016,/2017

53 / 53

