
Attribute Grammars and Semantic Analysis Type Analysis

Fundamental Concepts of Type Analysis

A type characterizes a set of values and the applicable
operations. The language design constrains the way how
values may interact.

• Strongly typed language:
Guarantee that all type constraints can be checked:

• static typing: at compile time
• dynamic typing: at execution time

• Weakly typed language:
No guarantee that operations are applied to arguments
that make sense.

Weak

Strong

Static Dynamic

SML Java

C++

C

Machine
Code

Scheme

JavaScript

Design Space of Types

We consider Static Type Analysis :

• Programmer declares type property - compiler checks

• Programmer uses typed entities - compiler infers their types and checks (e. g. SML)

Compiler Tasks:

• Keep track of the type of defined entities

• Check correct typing of program constructs, e. g. expressions

P. Pfahler (upb) PLaC Winter 2016/2017 42 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Typical Type Analysis Tasks

Example C Program

extern int puts(char*);

char *names[] = {"Spring", "Sommer",

"Fall", "Winter"};

int main() {

char i;

for (i = 0; i < 4; i = i + 1)

puts(names[i]);

return i;

}

What type-related checks have to be made to guarantee correct typing?

P. Pfahler (upb) PLaC Winter 2016/2017 43 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Taxonomy of Type Systems in Programming Languages

• Monomorphism : Every entity has only one type.
As a consequence there are different operators for similar operations, e.g.

addII: int x int -> int

addIF: int x float -> float

addFI: float x int -> float

addFF: float x float -> float

• Polymorphism : An entity may belong to several types.
Due to characteristics like coercion, overloading or subtyping all practical
programming languages have a polymorphic type system .

Classification of polymorphism

Polymorphism

Ad Hoc

Universal

Overloading

Coercion

Inclusion

Parametric

P. Pfahler (upb) PLaC Winter 2016/2017 44 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Ad Hoc Polymorphism

An ad hoc polymorphic function stands for a small set of different monomorphic
functions.

• Overloading : The same function name or operator can be used in different
contexts to denote different functions.

Example: In C there is one operator for addition + .
It stands for two different functions:

int+: int x int -> int

float+: float x float -> float

• Coercion : A function argument is converted to a type expected by the function.

Example: Artihmetic expression a + b in C.
+ is the overloaded operator as described above. If the two operands are of different
types, the float+ function is invoked after coercing the int operand to a float .

P. Pfahler (upb) PLaC Winter 2016/2017 45 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Universal Polymorphism 1

An universally polymorphic function works uniformly for an infinite set of types that all
have some common structure.

• Inclusion Polymorphism : An entity of a subtype S of T is acceptable where an
entity of type T is acceptable. Notation: S <: T

• Subtype relation established by class hierarchies in OO Languages
• Contravariant method arguments / covariant result types in overriding

T

S

Subtyping

A
method(s: S)

 B
method(t: T)

A
method(): T

 B
method(): S

Covariant
return type

Contravariant
parameter type

P. Pfahler (upb) PLaC Winter 2016/2017 46 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Universal Polymorphism 2

• Parametric Polymorphism : the polymorphic function works uniformly on a range
of types. An implicit or explicit type parameter determines the type of arguments for
each use.

• Polytypes in SML and Haskell: type parameters are substituted by type inference
• Generic classes in C++ and Java: type parameters are instanciated explicitly

map: ’a list X (’a -> ’b) -> ’b list

map([1,2,3], fn i => 2*i);

template <class A> class calc

{

public:

A multiply(A x, A y);

A add(A x, A y);

};

calc<double> dcalc;

P. Pfahler (upb) PLaC Winter 2016/2017 47 / 53

Attribute Grammars and Semantic Analysis Type Analysis

The Definition Module (Eli Implementation)

P. Pfahler (upb) PLaC Winter 2016/2017 48 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Type Analysis of Declarations

Example: Collecting Types of Variable Definitions

/* From the SetLan Specification (simplified) */

ATTR Type: DefTableKey;

ATTR TypeIsSet: VOID;

RULE: Declaration ::= Type VarNameDef ’;’ COMPUTE

VarNameDef.Type = Type.Type;

END;

RULE: Type ::= ’set’ COMPUTE Type.Type = setType; END;

RULE: Type ::= ’int’ COMPUTE Type.Type = intType; END;

RULE: VarNameDef ::= Identifier COMPUTE

VarNameDef.TypeIsSet = ResetTypeOf(VarNameDef.Key, VarNameDef.Type);

END;

Types are represented as definition table keys. setType and intType have been
predefined as keys.
An attribute TypeIsSet at the AST root that depends on all VarNameDef.TypeIsSet
attributes marks the fact that all variable definitions have been registered in the
definition table.

P. Pfahler (upb) PLaC Winter 2016/2017 49 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Type Analysis of Expressions

An expression node of the AST represents a program construct that yields a value. Two
attributes characterize an expression:

• Type: the type of value delivered by the node

• Required: the type of value required by the context in which the node appears

An expression node n is correctly typed if n.Type is acceptable as n.Required (possibly
causing a type coercion).

/* C Example */
char i;
i = i + 1;

assign

var expr

expr expr

var intliteral

Type

Required

Type

Required

Type

Required

int

int

intint

char

char

i

i 1

Resulting Machine Code
#
expand byte to 32 bits:
movzbl -1(%rbp), %eax
add 32 bits:
addl $1, %eax
use lowest 8 bits:
movb %al, -1(%rbp)

P. Pfahler (upb) PLaC Winter 2016/2017 50 / 53

Attribute Grammars and Semantic Analysis Type Analysis

Type Analysis for Expressions

Example: Checking Expression Types

/* From the SetLan Specification (simplified/Pseudocode) */

ATTR Type, Required: DefTableKey;

ATTR TypeIsSet: VOID;

RULE: expr ::= VarNameUse COMPUTE

expr.Type = GetTypeOf(VarNameUse.Key, ErrorType)

DEPENDS_ON INCLUDING ROOT.TypeIsSet;

END;

RULE: expr ::= Number COMPUTE

expr.Type = intType;

END;

RULE: expr ::= expr ’+’ expr COMPUTE

expr[1].Type =

if expr[2].Type == expr[3].Type == intType then intType

else if expr[2].Type == expr[3].Type == setType then setType

else ErrorType;

expr[2].Required = expr[3].Required = expr[1].Type;

if expr[1].Type != expr[1].Required then message("Type Mismatch");

END;

P. Pfahler (upb) PLaC Winter 2016/2017 51 / 53

Attribute Grammars and Semantic Analysis Semantic Error Handling

Semantic Error Handling

Error reports must refer to the source code:

• Any explicit or implicit requirement of the language definition needs to be checked,
e. g. if (IdUse.Bind == NoBinding) message (...)

• Checks have to be associated to the smallest relevant context. Necessary
information must be propagated to that context.
Not helpful: “Some arguments have wrong types”

• Meaningfull and expressive error reports.
Not helpful: “Type error”

• Different reports for different violations; do not connect symptoms by or.

All operations specified for the tree are executed, even if errors occur:

• Introduce error values, e. g. NoKey, NoType, NoOpr.

• Operations that yield results must yield a reasonable one in case of error.

• Operations have to accept error values as parameters.

• Avoid messages for avalanche errors by suitable extension of relations e. g. every
type is compatible with NoType.

P. Pfahler (upb) PLaC Winter 2016/2017 52 / 53

Attribute Grammars and Semantic Analysis Semantic Error Handling

Error Handling Examples

C Code (gcc 4 8)

void f(void);

void f() {

char i;

i = i + j;

f(7);

}

try.c: In function ’f’:

try.c:5:12:

error: ’j’ undeclared

try.c:6:4:

error: too many arguments

to function ’f’

Java Code (javac 1.8)

class Try {

void f() {

char i;

i = i + j;

f(7);

}

}

Try.java:4:

error: cannot find symbol

symbol: variable j

Try.java:5:

error: method f in class Try cannot

be applied to given types

required: no arguments

found: int

reason: actual and formal

argument lists differ in length

P. Pfahler (upb) PLaC Winter 2016/2017 53 / 53

