
Programming Languages and Compilers
Specification of Dynamic Semantics

Dr. Peter Pfahler
Based on the lecture by Prof. Dr. Uwe Kastens

Universität Paderborn
Fakultät EIM

Institut für Informatik

Winter 2016/2017

P. Pfahler (upb) PLaC Winter 2016/2017 1 / 6

Specification of Dynamic Semantics

Dynamic Semantics

The Dynamic semantics of a language describes the effect of executing a program. For
that purpose the behaviour ot the various language constructs is specified.
Informal natural language specifications are commonly used:

Each variable has a storage cell, suitable to store values of the type of
the variable. An assignment v := e is executed by the following steps:
determine the storage cell of the variable v, evaluate the expression e
yielding a value x, and store x in the storage cell of v.

Often the language specification does not explicitly state, what happens if an erroneous
program construct is executed:

The execution of an input statement is undefined if the next value of
the input is not a value of the type of the variable in the statement.

P. Pfahler (upb) PLaC Winter 2016/2017 2 / 6



Specification of Dynamic Semantics

Denotational Semantics

Denotational Semantics is a formal calculus for specification of dynamic semantics. It
maps language constructs of the abstract syntax to functions, thus defining their effect.
For a given structure tree the functions associated to the tree nodes are composed
yielding a semantic function of the whole program - statically.

Denotational Semantics allow to

• prove dynamic properties of a program formally,

• reason about the function of the program - rather than about is operational
execution,

• reason about dynamic properties of language constructs formally.

A denotational semantics specification of a programming language consists of

• the specification of semantic domains to model the program state

• a function E that maps all expression constructs on semantic functions

• a function C that maps all statement constructs on semantic functions

P. Pfahler (upb) PLaC Winter 2016/2017 3 / 6

Specification of Dynamic Semantics

Semantic Domains

Semantic domains describe the domains and ranges of the semantic functions of a
particular language. For an imperative language the central semantic domain describes
the program state.

Semantic domains of a very simple imperative language

State = Memory X Input X Output // Program State

Memory = Ident -> Value // Memory

Input = Value* // Input Stream

Output = Value* // Output Stream

Value = Numeral | Bool // Legal Values

Consequences for the language specified using these semantic domains:

• The language can allow only global variables, because a 1:1-mapping is assumed
between identifiers and storage cells. In general the storage has to be modelled:

Env = Ident -> Location

Memory = Location -> Value

• Undefined values and an error state are not modelled; hence, behaviour in erroneous
cases and exception handling can not be specified with these domains.

P. Pfahler (upb) PLaC Winter 2016/2017 4 / 6



Specification of Dynamic Semantics

Mapping of Expressions

Let Expr be the set of all constructs of the abstract syntax that represent expressions,
then the function E maps Expr to functions which describe expression evaluation:

E: Expr -> (State -> Value)

If additionally side-effects of expression evaluation must be modeled, the evaluation
function has to return a potentially changed state:

E: Expr -> (State -> (State X Value))

The mapping E is defined by enumerating the cases of the abstract syntax in the form

E [abstract syntax construct] state = evaluation result

Example of a simple expression mapping

E [e1 + e2] s = (E [e1] s) + (E [e2] s)

E [e1 * e2] s = (E [e1] s) * (E [e2] s)

E [Number] s = Number

E [Ident] (m, i, o) = m Ident

P. Pfahler (upb) PLaC Winter 2016/2017 5 / 6

Specification of Dynamic Semantics

Mapping of Statements

Let Command be the set of all constructs of the abstract syntax that represent statements,
then the function C maps Command to functions which describe statement execution:

C: Command -> (State -> State)

The C function computes a state transition. To additionally model jumps and labels in
statement execution an additional argument would be needed, which models the
continuation after execution of the specified construct (continuation semantics ).

The mapping C is defined by enumerating the cases of the abstract syntax in the form

C [abstract syntax construct] state = resulting state

Example of a simple statement mapping

C [stmt1; stmt2] s = C [stmt2] (C [stmt1] s)

C [v = e] (m, i, o) = (m [(E [e] (m, i, o)) / v], i, o) // change memory

C [if x then stmt1 else stmt2] s = E[x]s -> C [stmt1] s, C [stmt2] s

C [while x do stmt] s = E[x]s -> C [stmt; while x do stmt] s, s

C [print x] (m, i, o) = (m, i, E [x](m,i,o).o) // prepend value to output

P. Pfahler (upb) PLaC Winter 2016/2017 6 / 6


