
Parallel Programming WS 2014/2015 - Assignment 4
Kastens, Pfahler
Institut für Informatik, Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn
Dec 08, 2014

Exercise 1 (Rendezvous: The Fürstenallee Shuttle)

A new driverless shuttle train connects the Fürstenallee building with the University campus. It consists of a single
rail car with seats for 8 passengers. The shuttle only starts if the car is fully occupied.

We apply the design method for the rendezvous of processes to design a monitor for the FA shuttle simulation. The
following illustration shows the entry procedures and the counter variables:

a) Determine the monitor invariant.
b) Determine the waiting conditions and the counter increments (Slide 36). Fill in the following table:

Entry Procedure wait while ... Modify counters

ride

offer

c)
Substitute the increasing counters by limited counters.

d)
LAB: Implement a Java monitor class that can be used with the FA shuttle simulation in directory
blatt4/FAShuttle .

Exercise 2 (Barrier Synchronization: Rolling Dices)

We use N dices to generate endless sequences of random numbers:

 public class DiceTest {
 final static int N = 4;
 public static void main(String[] args) {
 DiceBarrier x = new DiceBarrier(N);

 for (int i = 1; i <= N; i++) {
 new Dice(i, x).start();
 }
 }
 }

The results of each round have to be added and output. Therefore the dices have to be synchronized using a barrier
after each throw:

 public class Dice extends Thread {
 private DiceBarrier x;
 private int number;
 private int val;

 public Dice(int number, DiceBarrier x) {
 this.number = number;
 this.x = x;
 }

 public void run() {
 while (true) {
 val = (int) (Math.random() * 6) + 1;
 x.barrier(number, val);
 }
 }
 }

Use a simple shared counter barrier (Slide 44) to complete the implementation (blatt4/dices) of class
DiceBarrier :

 public class DiceBarrier {
 private final int N; // number of dices

 DiceBarrier(int n) {
 N = n;
 }

 synchronized public void barrier(int dicenumber, int value) {
 // to be completed
 }
 }

Hint: The barrier method is also responsible for computing the sum of the dice values. The dicenumber
parameter can be used to generate log output like:

 Dice 4 arrived
 Dice 2 arrived
 Dice 3 arrived
 Dice 1 arrived
 Sum = 15
 Dice 1 arrived
 Dice 4 arrived
 Dice 2 arrived
 Dice 3 arrived
 Sum = 17
 ...

	Parallel Programming WS 2014/2015 - Assignment 4
	Exercise 1 (Rendezvous: The Fürstenallee Shuttle)
	Exercise 2 (Barrier Synchronization: Rolling Dices)

