
Parallel Programming WS 2014/2015 - Solution 5
Kastens, Pfahler
Institut für Informatik, Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn
Jan 05, 2015

Solution for Exercise 4

Original loop:

 for I = 1 to 3 do
 for J = 1 to 3 do
 A[I, J] = A[I - 1, J + 1] + 1
 endfor
 endfor

a) The iteration space including a dependence vector.

 x x x
 x x x
 x x x

D = 1
 -1

b) It is illegal to permute the I and J loops because the resulting dependence vector is negative:

 T = 0 1
 1 0

 T * D = 0 1 * 1 = -1
 1 0 -1 1

c) Applying a skewing transformation with factor 1:

 T = 1 0
 1 1

 T * D = 1 0 * 1 = 1
 1 1 -1 0

Legal.
d) The resulting iteration space including a dependence vector:

 x coord (3,6)
 x x
 x x x
 x x
 x coord (1,2)

D = 1
 0

e) Permuting the I and J loops of the resulting code:

 T = 0 1
 1 0

 T * D = 0 1 * 1 = 0
 1 0 0 1

Legal.
f) The resulting iteration space including a dependence vector:

 x x x coord (4,3) - coord(6,3)
 x x x
 x x x coord (2,1) - coord(4,1)

D = 0
 1

g) The loop bounds of the transformed loop derived from the drawing:

 i’ runs from 2 to 6
 j’ runs from max(1, i’ - 3) to min(3, i’ - 1)

h) Homework: Deriving the loop bounds mathematically:

Skewing matrix S: 1 0
 1 1

Permutation matrix: 0 1
 1 0

Overall transformation:
T = P * S: 1 1
 1 0

The inverse transformation matrix T-1:

 0 1
 1 -1

The bounds equation derived from the original program is

 B * i <= -1
 j 3
 -1
 3

==>

 -1 0 * i <= -1
 1 0 j 3
 0 -1 -1
 0 1 3

The bounds equation derived for the transformed program is

 B * T -1 * i’ <= -1
 j’ 3
 -1
 3

==>

 0 -1 * i’ <= -1
 0 1 j’ 3
 -1 1 -1
 1 -1 3

which yields

 j’ >= 1
 j’ <= 3
 j’ - i’ <= -1
 i’ - j’ <= 3

==>

 2 <= i’ <= 6
 j’ >= max (1, i’ - 3)
 j’ y= min (3, i’ - 1)

which corresponds to the bounds we derived graphically. Additionally we compute the transformed loop body:

The old iteration variables in terms of the new ones:

 T -1 * i’ = i
 j’ j

==>

 0 1 * i’ = i
 1 -1 j’ j

==>

 i = j’
 j = i’ - j’

Together the transformed program looks as follows:

 for i’ = 2 to 6 do
 for j’ = max (1, i’ - 3) to min (3, i’ - 1) do
 A[j’, i’ - j’] = A[j’ - 1, i’ - j’ + 1] + 1
 endfor
 endfor

It computes the array elements in the order

A[11], A[12], A[21], A[13], A[22], A[31], A[23], A[32], A[33]

Solution for Exercise 5

 for I = 0 to N do
 for J = 0 to M do
 A[I + 1, J] = A[I, J - 1] + A[I + 1, J - 2]
 endfor
 endfor

These are the necessary steps:
1. Draw the iteration space.

A rectangle from (0,0) to (3,3):

 x x x x
 x x x x
 x x x x
 x x x x

2. Compute the dependence vectors and draw examples of them into the iteration space.

The dependence vectors are (1, 1)T and (0, 2)T .
3. Apply a skewing transformation with factor 1 and draw the iteration space.

 x
 x x
 x x x
 x x x x
 x x x
 x x
 x

4. Apply a permutation transformation and draw the iteration space.

 x x x x
 x x x x
 x x x x
 x x x x

5. Compute the matrix of the composed transformation and use it to transform the dependence vectors.

Skewing matrix S: 1 0
 1 1

Permutation matrix: 0 1
 1 0

T = P * S: 1 1
 1 0

Transformed dependence vectors T * D:
 1 1 1 0 2 2
 * =
 1 0 1 2 1 0

6. Compute the inverse of the transformation matrix and use it to transform the index expressions.

Inverse Transformation Matrix T-1:

 0 1
 1 -1

Transformation of index expressions:

 0 1 ip i
 * =
 1 -1 jp j

yields i = jp and j = ip - jp .
7. Specify the loop bounds by inequalities and transform them by the inverse of the transformation
matrix.

B * T -1 * IP <= c

 -1 0 0
 1 0 0 1 ip N
 * * <=
 0 -1 1 -1 jp 0
 0 1 M

simplifies to

 0 -1 0
 0 1 ip N
 * <=
 -1 1 jp 0
 1 -1 M

such that

 0 <= ip <= M + N
 max(0, ip - M) <= jp <= min (ip, N)

8. Write the complete loops with new loop variables ip and jp and new loop bounds.

 for I = 0 to M+N do
 for J = max(0, I-M) to min(I, N) do
 A[J + 1, I - J] = A[J, I - J - 1] + A[J + 1, I - J - 2]
 endfor
 endfor

If N = M = 2 the transformed loop executes the computations:

s00: A[1, 0] = A[0, -1] + A[1, -2]
s10: A[1, 1] = A[0, 0] + A[1, -1]
s11: A[2, 0] = A[1, -1] + A[2, -2]
s20: A[1, 2] = A[0, 1] + A[1, 0]
s21: A[2, 1] = A[1, 0] + A[2, -1]
s22: A[3, 0] = A[2, -1] + A[3, -2]
s31: A[2, 2] = A[1, 1] + A[2, 0]
s32: A[3, 1] = A[2, 0] + A[3, -1]
s42: A[3, 2] = A[2, 1] + A[3, 0]

These are the same computations that are executed by the original loop. The computations of the inner loop
are parallelizable.

	Parallel Programming WS 2014/2015 - Solution 5
	Solution for Exercise 4
	Solution for Exercise 5

