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Solution for Exercise 4

Original loop: 

   for I = 1 to 3 do
     for J = 1 to 3 do
       A[I, J] = A[I - 1, J + 1] + 1
     endfor
   endfor

a) The iteration space including a dependence vector. 

   x x x
   x x x      
   x x x

D = 1
    -1

b) It is illegal to permute the I and J loops because the resulting dependence vector is negative: 

   T = 0 1
       1 0

   T * D = 0 1 * 1  = -1
           1 0   -1    1

c) Applying a skewing transformation with factor 1: 

   T = 1 0
       1 1

   T * D = 1 0 *  1  = 1
           1 1   -1    0

Legal. 
d) The resulting iteration space including a dependence vector: 

       x       coord (3,6) 
     x x
   x x x
   x x
   x           coord (1,2)

D = 1
    0

e) Permuting the I and J loops of the resulting code: 

   T = 0 1
       1 0

   T * D = 0 1 * 1  = 0
           1 0   0    1

Legal. 
f) The resulting iteration space including a dependence vector: 



       x x x      coord (4,3) - coord(6,3)
     x x x
   x x x          coord (2,1) - coord(4,1)

D = 0
    1

g) The loop bounds of the transformed loop derived from the drawing: 

   i’ runs from 2 to 6
   j’ runs from max(1, i’ - 3) to min(3, i’ - 1)

h) Homework: Deriving the loop bounds mathematically: 

Skewing matrix S:    1 0
                     1 1

Permutation matrix:  0 1
                     1 0

Overall transformation:
T = P * S:           1 1
                     1 0

The inverse transformation matrix T-1: 

   0 1
   1 -1

The bounds equation derived from the original program is 

   B * i  <=  -1
       j       3
              -1
               3

==> 

   -1  0  * i  <=  -1
    1  0    j       3
    0 -1           -1
    0  1            3

The bounds equation derived for the transformed program is 

   B * T -1  * i’  <=  -1
              j’       3
                      -1
                       3

==> 

    0 -1  * i’  <=  -1
    0  1    j’       3
   -1  1            -1
    1 -1             3

which yields 

   j’ >= 1
   j’ <= 3
   j’ - i’ <= -1
   i’ - j’ <= 3

==> 

   2 <= i’ <= 6
   j’ >= max (1, i’ - 3)
   j’ y= min (3, i’ - 1)



which corresponds to the bounds we derived graphically. Additionally we compute the transformed loop body: 

The old iteration variables in terms of the new ones: 

   T -1  * i’  =  i
          j’     j

==> 

   0  1  * i’ = i
   1 -1    j’   j

==> 

   i = j’
   j = i’ - j’

Together the transformed program looks as follows: 

   for i’ = 2 to 6 do
     for j’ = max (1, i’ - 3) to min (3, i’ - 1) do
       A[j’, i’ - j’] = A[j’ - 1, i’ - j’ + 1] + 1
     endfor
   endfor

It computes the array elements in the order 

A[11], A[12], A[21], A[13], A[22], A[31], A[23], A[32], A[33]

Solution for Exercise 5

   for I = 0 to N do
     for J = 0 to M do
       A[I + 1, J] = A[I, J - 1] + A[I + 1, J - 2]
     endfor                    
   endfor

These are the necessary steps: 
1. Draw the iteration space. 

A rectangle from (0,0) to (3,3): 

   x x x x
   x x x x
   x x x x
   x x x x

2. Compute the dependence vectors and draw examples of them into the iteration space. 

The dependence vectors are (1, 1)T  and (0, 2)T . 
3. Apply a skewing transformation with factor 1 and draw the iteration space. 

         x
       x x
     x x x
   x x x x
   x x x  
   x x    
   x

4. Apply a permutation transformation and draw the iteration space. 

         x x x x
       x x x x
     x x x x
   x x x x

5. Compute the matrix of the composed transformation and use it to transform the dependence vectors. 



Skewing matrix S:    1 0
                     1 1  

Permutation matrix:  0 1
                     1 0

T = P * S:           1 1
                     1 0
     
Transformed dependence vectors T * D:
 1 1       1 0       2 2 
       *         =   
 1 0       1 2       1 0

6. Compute the inverse of the transformation matrix and use it to transform the index expressions. 

Inverse Transformation Matrix T-1: 

   0 1 
   1 -1

Transformation of index expressions: 

   0 1      ip       i
        *        = 
   1 -1     jp       j

yields i = jp  and j = ip - jp . 
7. Specify the loop bounds by inequalities and transform them by the inverse of the transformation
matrix. 

B * T -1 * IP <= c 

   -1 0                                  0
   1  0       0 1         ip             N
         *           *          <= 
   0 -1       1 -1        jp             0
   0  1                                  M

simplifies to 

   0 -1                      0
   0  1       ip             N
          *          <= 
   -1 1       jp             0
   1  -1                     M

such that 

   0 <= ip <= M + N
   max(0, ip - M) <= jp <= min (ip, N)

8. Write the complete loops with new loop variables ip and jp and new loop bounds. 

   for I = 0 to M+N do
     for J = max(0, I-M) to min(I, N) do
       A[J + 1, I - J] = A[J, I - J - 1] + A[J + 1, I - J - 2]
     endfor                    
   endfor

If N = M = 2 the transformed loop executes the computations: 



s00: A[1, 0] = A[0, -1] + A[1, -2]
s10: A[1, 1] = A[0, 0] + A[1, -1]
s11: A[2, 0] = A[1, -1] + A[2, -2]
s20: A[1, 2] = A[0, 1] + A[1, 0]
s21: A[2, 1] = A[1, 0] + A[2, -1]
s22: A[3, 0] = A[2, -1] + A[3, -2]
s31: A[2, 2] = A[1, 1] + A[2, 0]
s32: A[3, 1] = A[2, 0] + A[3, -1]
s42: A[3, 2] = A[2, 1] + A[3, 0]

These are the same computations that are executed by the original loop. The computations of the inner loop
are parallelizable. 
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