Parallel Programming WS 2014/2015 - Solution 5

Kastens, Pfahler
Institut für Informatik, Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn Jan 05, 2015

Solution for Exercise 4

Original loop:

```
for I = 1 to 3 do
        for J = 1 to 3 do
            A[I, J] = A[I - 1, J + 1] + 1
        endfor
endfor
```

a) The iteration space including a dependence vector.
$x \quad x \quad x$
X X X
X X X

D $=1$
-1
b) It is illegal to permute the I and J loops because the resulting dependence vector is negative:

```
T = 0 1
            1
T * D = llllllll
```

c) Applying a skewing transformation with factor 1:

```
T = 1 0
            1 1
T * D = 1 0 * r 1 = 1
```

Legal.
d) The resulting iteration space including a dependence vector:

	x	coord $(3,6)$	
x	x		
x	x	x	
x	x		
x			
1			
0			

e) Permuting the I and J loops of the resulting code:

```
T = 0 1
    1 0
T * D = 0 1 * 1 1 = 0
```

Legal.
f) The resulting iteration space including a dependence vector:

```
            x x x coord (4,3) - coord (6,3)
            x X X
x x x coord (2,1) - coord(4,1)
D = 0
1
```

g) The loop bounds of the transformed loop derived from the drawing:

```
i' runs from 2 to 6
j' runs from max(1, i' - 3) to min(3, i' - 1)
```

h) Homework: Deriving the loop bounds mathematically:

Skewing matrix $S:$	1	0
	1	1
Permutation matrix:	0	1
	1	0

Overall transformation:
$T=P * S: \quad 11$
10

The inverse transformation matrix T^{-1} :

$$
\begin{array}{ll}
0 & 1 \\
1 & -1
\end{array}
$$

The bounds equation derived from the original program is

The bounds equation derived for the transformed program is

$$
B * T^{-1} * i^{\prime} \quad<=\begin{array}{r}
-1 \\
j^{\prime}
\end{array}
$$

$$
=>
$$

0	-1	$*$	i^{\prime}	$<=$	-1
0	1		j^{\prime}		3
-1	1			-1	
1	-1				3

which yields

```
    j' >= 1
    j' <= 3
    j' - i' <= -1
    i' - j' <= 3
==>
2 <= i' <= 6
j' >= max (1, i' - 3)
j' y= min (3, i' - 1)
```

which corresponds to the bounds we derived graphically. Additionally we compute the transformed loop body:
The old iteration variables in terms of the new ones:

```
    T-1 * i' = i
==>
    0 1 * i' = i
    1 -1 j' j
==>
    i = j'
    j = i' - j'
```

Together the transformed program looks as follows:

```
for i' = 2 to 6 do
    for j' = max (1, i' - 3) to min (3, i' - 1) do
        A[j', i' - j'] = A[j' - 1, i' - j' + 1] + 1
    endfor
endfor
```

It computes the array elements in the order
$A[11], A[12], A[21], A[13], A[22], A[31], A[23], A[32], A[33]$

Solution for Exercise 5

```
for I = 0 to N do
    for J = 0 to M do
        A[I + 1,J] = A[I, J - 1] + A[I + 1, J - 2]
    endfor
endfor
```

These are the necessary steps:

- 1. Draw the iteration space.

A rectangle from $(0,0)$ to $(3,3)$:

```
X X X X
x X X X
x x x x
X X X X
```

- 2. Compute the dependence vectors and draw examples of them into the iteration space.

The dependence vectors are $(1,1)^{\mathrm{T}}$ and $(0,2)^{\mathrm{T}}$.

- 3. Apply a skewing transformation with factor 1 and draw the iteration space.

```
            X
                x x
    X X X
x x x
x X
x X
X
```

- 4. Apply a permutation transformation and draw the iteration space.

```
    X X X X
    X X X X
    x x x x
x X X X
```

- 5. Compute the matrix of the composed transformation and use it to transform the dependence vectors.

```
Skewing matrix S: 1 0
    1 1
Permutation matrix: 0 1
    10
T = P * S: 1 1
    10
Transformed dependence vectors T * D:
    1 1 1 0 2 2
    10 1 2 1 0
```

- 6. Compute the inverse of the transformation matrix and use it to transform the index expressions. Inverse Transformation Matrix T^{-1} :

```
O 1
1 -1
```

Transformation of index expressions:

```
0 1 * ip l = i
```

yields i $=j p$ and $j=i p-j p$.

- 7. Specify the loop bounds by inequalities and transform them by the inverse of the transformation matrix.

B $* \mathrm{~T}^{-1} * \mathrm{IP}<=\mathrm{c}$

	0							0
1	0		0	1		ip		N
		*			*		<=	
0	-1		1	-1		jp		0
0	1							M

simplifies to

					0
0	1		ip		N
		*		<=	
-1	1		jp		0
	-1				M

such that

```
0 <= ip <= M + N
max(0, ip - M) <= jp <= min (ip, N)
```

- 8. Write the complete loops with new loop variables ip and jp and new loop bounds.

```
for I = 0 to M+N do
    for J = max(0, I-M) to min(I, N) do
        A[J + 1,I - J] = A[J,I - J - 1] + A[J + 1, I - J - 2]
    endfor
endfor
```

If $\mathrm{N}=\mathrm{M}=2$ the transformed loop executes the computations:

```
s00: A[1, 0] = A[0, -1] + A[1, -2]
s10: A[1, 1] = A[0, 0] + A[1, -1]
s11: A[2, 0] = A[1, -1] + A[2, -2]
s20: A[1, 2] = A[0, 1] + A[1, 0]
s21: A[2, 1] = A[1, 0] + A[2, -1]
s22: A[3, 0] = A[2, -1] + A[3, -2]
s31: A[2, 2] = A[1, 1] + A[2, 0]
s32:A[3, 1] = A[2, 0] + A[3, -1]
s42: A[3, 2] = A[2, 1] + A[3, 0]
```

These are the same computations that are executed by the original loop. The computations of the inner loop are parallelizable.

