
©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Programming
Prof. Dr. Uwe Kastens

Winter 2014 / 2015

PPJ-1

Lecture Parallel Programming WS 2014/2015 / Slide 01

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Objectives
PPJ-2

The participants are taught to understand and to apply

• fundamental concepts and high-level paradigms of parallel programs,

• systematic methods for developing parallel programs,

• techniques typical for parallel programming in Java;

• English language in a lecture.

Exercises:

• The exercises will be tightly integrated with the lectures.

• Small teams will solve given assignments practically supported by a lecturer.

• Homework assignments will be solved by those teams.

Lecture Parallel Programming WS 2014/2015 / Slide 02

Objectives:

Understand the objectives

In the lecture:

Explanation of the objectives

Questions:

Do these objectives coincide with yours?

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Contents

Week Topic

1 1. Introduction

2 2. Properties of Parallel Programs

4 3. Monitors in General and in Java

5 4. Systematic Development of Monitors

6 5. Data Parallelism: Barriers

7 6. Data Parallelism: Loop Parallelization

11 7. Asynchronous Message Passing

12 8. Messages in Distributed Systems

14 9. Synchronous message Passing

10. Conclusion

PPJ-3

Lecture Parallel Programming WS 2014/2015 / Slide 03

Objectives:

Overview over the topics of the course

In the lecture:

Brief explanations of the topics

Questions:

• Which topics are you mostly interested in?

• Which are of less interest?

• Do you miss any topic?

Prerequisites

Topic Course that teaches it

practical experience in programming Java Grundlagen der Programmierung 1, 2

foundations in parallel programming Grundlagen der Programmierung 2,
Konzepte und Methoden der
Systemsoftware (KMS)

process, concurrency, parallelism, KMS
interleaved execution KMS
address spaces, threads, process states KMS
monitor KMS

process, concurrency, parallelism, GP, KMS
threads, GP, KMS
synchronization, monitors in Java GP, KMS

verfication of properties of programs Modellierung

PPJ-4

Lecture Parallel Programming WS 2014/2015 / Slide 04

Objectives:

Sources for prerequisites

In the lecture:

• Explanations.

• The notions will be briefly repeated in the first chapter of this lecture - as introduced in GP and KMS

Suggested reading:

Relevant sections of lecture material of

• Grundlagen der Programmierung 1, 2,

• Konzepte und Methoden der Systemsoftware

Questions:

• Did you attend those lectures?

• Are you going to learn or to repeat those topics?

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Organization of the course
PPJ-5

Lecture Parallel Programming WS 2014/2015 / Slide 05

Objectives:

Introduce the form of the material.

In the lecture:

• Explain the organization of the material.

Questions:

• Did you already explore the material?

• Did you place bookmarks into it?

©
 2

01
2

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Literature

Course material „Parallel Programming “
http://ag-kastens.upb.de/lehre/material/ppje

Course material „Grundlagen der Programmierung“ (in German)
Course material „Software-Entwicklung I + II “ WS, SS 1998/1999:(in German)

http://ag-kastens.upb.de/lehre/material/swei
Course material „Konzepte und Methoden der Systemsoftware “ (in German)
Course material „Modellierung “ (in German)

http://ag-kastens.upb.de/lehre/material/model

Gregory R. Andrews: Concurrent Programming , Addison-Wesley, 1991

Gregory R. Andrews: Foundations of multithreaded, parallel, and distributed
programming, Addison-Wesley, 2000

David Gries: The Science of Programming , Springer-Verlag, 1981

Scott Oaks, Henry Wong: Java Threads , 2nd ed., O‘Reilly, 1999

Jim Farley: Java Distributed Computing , O‘Reilly, 1998

Doug Lea: Concurrent Programming in Java , Addison-Wesley, 2nd Ed., 2000

PPJ-6

Lecture Parallel Programming WS 2014/2015 / Slide 06

Objectives:

Reference to books

In the lecture:

Explain

• Andrews’ book treats the concepts very thoroughly - deeper than we can do it in this lecture.

• The 3 books on Java present programming techniques very extensively with many elaborated examples; in some parts
orientation is a bit missing.

Questions:

Are you going to dive into the matter along those books?

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Fundamental notions (repeated): Parallel processes

process :
Execution of a sequential part of a program in its storage (address space).
Variable state: contents of the storage and the position of execution

parallel processes :
several processes, which are executed simultaneously on several processors

interleaved processes :
several processes, which are executed piecewise alternatingly on a single processor
processes are switched by a common process manager or by the processes themselves.

interleaved execution can simulate parallel execution;
frequent process switching gives the illusion that all process execute steadily.

concurrent processes:
processes, that can be executed in parallel or interleaved

p1
p2
p3

p1
p2
p3

PPJ-7

Lecture Parallel Programming WS 2014/2015 / Slide 07

Objectives:

Repeat fundamental notions of processes

In the lecture:

• The notions are explained.

• Interleaved execution is also used as a model for describing properties of a system of processes.

Suggested reading:

SWE-131

Questions:

• Which are the situations when a process switch is performed?

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Fundamental notions (repeated): States and transitions of
processes

Threads (lightweight processes, Leichtgewichtsprozesse):
Processes, that are executed in parallel or interleaved in one common address space;
process switching is easy and fast.

PPJ-8

wartend

bereit

block

allocate processor

release

deallocate processor

blocked

ready running
Scheduling

see KMS 2-17, 2-18

rechnend

Lecture Parallel Programming WS 2014/2015 / Slide 08

Objectives:

Understand process switching

In the lecture:

• Explain states and transistions.

• Role of the scheduler.

Questions:

• Give reasons and examples for state transitions.

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Applications of parallel processes
PPJ-9

• Event-based user interfaces :
Events are propagated by a specific process of the system.
Time consuming computations should be implemented by concurrent
processes,
to avoid blocking of the user interface.

• Simulation of real processes:
e. g. production in a factory

• Animation :
visualization of processes, algorithms; games

• Control of machines in Real-Time:
processes in the computer control external facilities,
e. g. factory robots, airplane control

• Speed-up of execution by parallel computation:
several processes cooperate on a common task,
e. g. parallel sorting of huge sets of data

The application classes follow different objectives .

Lecture Parallel Programming WS 2014/2015 / Slide 09

Objectives:

recognize different goals of parallelism

In the lecture:

Example are used to explain the classes of applications

Suggested reading:

SWE-132

Questions:

• Give further examples for the use of parallel processes, and point out their category.

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Create threads in Java - technique: implement Runnable

Processes, threads in Java :
concurrently executed in the common address space of the program (or applet),
objects of class Thread with certain properties

Technique 1 : A user‘s class implements the interface Runnable :

class MyTask implements Runnable
{ ...

public void run () The interface requires to implement the method run
{...} - the program part to be executed as a process.
public MyTask(...) {...} The constructor method.

}

The process is created as an object of the predefined class Thread :

Thread aTask = new Thread (new MyTask (...));

The following call starts the process:

aTask.start(); The new process starts executing in parallel with the initiating one.

This technique (implement the interface Runnable) should be used if

• the new process need not be influenced any further;
i. e. it performs its task (method run) and then terminates, or

• the user‘s class is to be defined as a subclass of a class different from Thread

PPJ-10

Lecture Parallel Programming WS 2014/2015 / Slide 10

Objectives:

Understand declaration of process classes

In the lecture:

3 development steps:

• declare the class with its run method

• create a process object

• start the execution of the process object

If the user’s class would need further object methods, they would be difficult to access. In that case one should better
apply the second technique for process class declaration.

Suggested reading:

SWE-133

Questions:

• The class Thread has class methods and object methods. Which can be called from the run method in which way?

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Create threads in Java - technique: subclass of Thread

Technique 2 :
The user‘s class is defined as a subclass of the predefined class Thread :

class DigiClock extends Thread
{ ...

public void run () Overrides the Thread method run .
{...} The program part to be executed as a process.
DigiClock (...) {...} The constructor method.

}

The process is created as an object of the user‘s class (it is a Thread object as well):

Thread clock = new DigiClock (...);

The following call starts the process:

clock.start(); The new process starts executing in parallel with the initiating one.

This technique (subclass of Thread) should be used if
the new process needs to be further influenced ; hence,
further methods of the user‘s class are to be defined and called from outside the class,
e. g. to interrupt the process or to terminate it.
The class can not have another superclass!

PPJ-11

Lecture Parallel Programming WS 2014/2015 / Slide 11

Objectives:

Understand declaration of process classes

In the lecture:

3 development steps:

• declare the class with its run method

• create a process object

• start the execution of the process object

Compare to the variant with the interface Runnable .

Suggested reading:

SWE-134

Questions:

• The class Thread has class methods and object methods. Which can be called from the run method in which way?

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Important methods of the class Thread

public void run ();

is to be overridden with a method that contains the code to be executed as a process

public void start ();

starts the execution of the process
public void suspend ();

(deprecated, deadlock-prone),
suspends the indicated process temporarily: e. g. clock.suspend();

public void resume ();
(deprecated), resumes the indicated process: clock.resume();

public void join () throws InterruptedException;

the calling process waits until the indicated process has terminated

try { auftrag.join(); } catch (Exception e){}

public static void sleep (long millisec) throws InterruptedException;

the calling process waits at least for the given time span (in milliseconds), e. g.

try { Thread.sleep (1000); } catch (Exception e){}

public final void stop () throws SecurityException;
not to be used! May terminate the process in an inconsistent state.

PPJ-12

Lecture Parallel Programming WS 2014/2015 / Slide 12

Objectives:

Overview over the Thread methods

In the lecture:

• Explain the methods.

• Demonstrate the execution of the involved processes graphically.

• Point to examples.

Suggested reading:

SWE-137

Assignments:

Demonstrate the execution of the methods graphically.

Questions:

• Which method calls involve two processes, which only one?

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Digital clock as a process in an applet (1)

The process displays the current date and time
every second as a formatted text.

class DigiClock extends Thread
{ public void run ()

{ while (running) iterate until it is terminated from the outside
{ line.setText(new Date().toString()); write the date

try { sleep (1000); } catch (Exception ex) {} pause
}

}
Method, that terminates the process from the outside:

public void stopIt () { running = false; }
private volatile boolean running = true; state variable

public DigiClock (Label t) {line = t;} label to be used for the text
private Label line;

}

Technique process as a subclass of Thread , because it

• is to be terminated by a call of stopIt ,

• is to be interrupted by calls of further Thread methods,

• other super classes are not needed .

PPJ-13

Lecture Parallel Programming WS 2014/2015 / Slide 13

Objectives:

A first complete example

In the lecture:

Explanation of

• the execution until termination from the outside.

• the stopIt method,

• the reason for the variant "subclass of Thread".

Demonstrate the applet Digital Clock Process

Suggested reading:

SWE-135

Assignments:

Install the example and modify it.

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Digital clock as a process in an applet (2)

The process is created in the init method of the subclass of Applet :

public class DigiApp extends Applet
{ public void init ()

{ Label clockText = new Label ("--------------------------------");
add (clockText);

clock = new DigiClock (clockText); createprocess
clock.start(); start process

}

public void start () { /* see below */ } resume process
public void stop () { /* see below */ } suspend process
public void destroy () { clock.stopIt(); } terminate process

private DigiClock clock;
}

Processes, which are started in an applet

• may be suspended, while the applet is invisible (stop , start);
better use synchronization or control variables instead of suspend , resume

• are to be terminated (stopIt), when the applet is deallocated (destroy).

Otherwise they bind resources, although they are not visible.

PPJ-14

Lecture Parallel Programming WS 2014/2015 / Slide 14

Objectives:

Start a process from an applet

In the lecture:

Explain how to start, suspend, resume, and terminate a process from an applet.

Suggested reading:

SWE-136

Assignments:

Modify the classes of this example such that DigiClock implements Runnable instead of being a subclass of Thread .

Questions:

• Explain why DigiClock extends Thread in the presented version.

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

2. Properties of Parallel Programs
PPJ - 15a

Goals:

• formal reasoning about parallel programs

• proof properties of parallel programs

• develop parallel programs such that
certain properties can be proven

Example A:

x := 0; y := 0
co x := x + 1 //

y := y + 1
oc
z := x + y

Branches of co-oc are executed
in parallel.

Proof that z = 2 holds at the end.

Example B:

x := 0; y := 0
co x := y+ 1 //

y := x+ 1
oc
z := x + y

Show that z = 2 can not be
proven.

Methods:

Hoare Logic, Weakest Precondition, techniques for parallel programs

Lecture Parallel Programming WS 2014/2015 / Slide 15a

Objectives:

Recognize the necessity for formal reasoning

In the lecture:

Explain the goals and the examples.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Proofs of parallel programs
PPJ - 15ab

Example A:
x := 0; y := 0 {x=0 ∧ y=0}
co
{x+1=1} x := x + 1 {x=1} //
{y+1=1} y := y + 1 {y=1}
oc
{x=1 ∧ y=1} → {x+y=2}
z := x + y {z=2}

Does an assignment of process p interfere with an assertion of process q ?

Example B 2:
x := 0; y := 0 {x ≥0 ∧ y≥0}
co
{y+1>0} x := y + 1 {x>0} //
{x+1>0} y := x + 1 {y>0}
oc
{x>0 ∧ y>0} → {x+y ≥2}
z := x + y {z ≥2}

Example B 1:
x := 0; y := 0 {x=0 ∧ y=0}
co
{y+1=1} x := y + 1 {x=1} //
{x+1=1} y := x + 1 {y=1}
oc
{x=1 ∧ y=1} → {x+y=2}
z := x + y {z=2}

Check each proof for correctness!

Explain!

Lecture Parallel Programming WS 2014/2015 / Slide 15ab

Objectives:

How to proof parallel programs

In the lecture:

Check the correctness of proofs

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Hoare Logic: a brief reminder
PPJ - 15b

Formal calculus for proving properties of algorithms or programs [C. A. R. Hoare, 1969]

Predicates (assertions) are stated for program positions:

{P} S1 {Q} S2 {R}

A predicate, like Q, characterizes the set of states that any execution of the program can
achieve at that position. The predicates are expressions over variables of the program.

Each triple {P} S {Q} describes an effect of the execution of S. P is called a precondition,
Q a postcondition of S.

The triple {P} S {Q} is correct, if the following holds:
If the execution of S is begun in a state of P and if it terminates , the the final state is in Q
(partial correctness).

Two special assertions are:
{true} characterizing all states, and {false} characterizing no state.

Proofs of program properties are constructed using axioms and inference rules which
describe the effects of each kind of statement, and define how proof steps can be correctly
combined.

Lecture Parallel Programming WS 2014/2015 / Slide 15b

Objectives:

Recall the fundamental notions of Hoare logic

In the lecture:

The notions are explained. (see lecture material "Modellierung", slides Mod-4.51 to Mod-4.68)

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Axioms and inference rules for sequential constructs
PPJ - 15c

statement sequence

{P}
{Q}

{P}

 S1 {Q}
{R}

{R}

S2

S1; S2

1
{ P } S { R }

{ R } → { Q }

{ P } S { Q }

weaker postcondition

4

{ P } → { R }

{ R } S { Q }

{ P } S { Q }

stronger precondition

3

{ P[x/e] } x := e {P}

assignment

P[x/e] means: P with all
free occurrences
of x substituted by e

2
P ∧ ¬(Β1 ∨ ... ∨ Βn) ⇒ Q
{P ∧ Bi} Si {Q}, 1 ≤ i ≤ n

{P} if Β1 → S1 [] ... [] Βn → Sn fi {Q}

multiple alternative (guarded command)

5

{INV ∧ Bi} Si {INV}, 1 ≤ i ≤ n

{INV} do Β1 → S1 [] ... [] Βn → Sn od {INV ∧ ¬(Β1 ∨ ... ∨ Βn)}

selecting iteration

6

{P} skip {P}

no operation

7

Lecture Parallel Programming WS 2014/2015 / Slide 15c

Objectives:

Understand the inference rules

In the lecture:

The rules are explained:

• 1, 2, 3 are explained in "Modellierung" Mod-4.57 to MOd-4.60,

• guarded commands and iteration are generalized form of those explained in Mod-4.61 to Mod-4.66b,

• skip is clear.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Verification: algorithm computes gcd
PPJ-15d

precondition: x, y ∈ , i. e. x > 0, y > 0; let G be greatest common divisor of x and y
postcondition: a = G
algorithm with { assertions over variables }:

{ G is gcd of x and y ∧ x>0 ∧ y>0 }
a := x; b := y;
{ INV: G is gcd of a and b ∧ a>0 ∧ b>0 }
do a ≠ b ->

{ INV ∧ a ≠ b }
if a > b ->

{ G is gcd of a and b ∧ a>0 ∧ b>0 ∧ a>b } →
{ G is gcd of a-b and b ∧ a-b>0 ∧ b>0 }
a := a - b
{ INV }

[] a <= b ->
{ G is gcd of a and b ∧ a>0 ∧ b>0 ∧ b>a } →
{ G is gcd of a and b-a ∧ a>0 ∧ b-a>0 }
b := b - a
{ INV }

fi { INV ∧ a ≠ b ∧ ¬(a>b ∨ a ≤ b) → INV} „there is no 3rd case for the if -> INV“
{ INV }

od
{ INV ∧ a = b } →
{ a = G }

ΙN

the loop terminates:

• a+b decreases monotonic

• a+b > 0 is invariant

Lecture Parallel Programming WS 2014/2015 / Slide 15d

Objectives:

Example for application of inference rules

In the lecture:

The verification steps are explained in "Modellierung" slide and PDF-file Mod-4.68

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Weakest precondition
PPJ - 15e

A similar calculus as Hoare Logic is based on the notion of weakest preconditions
[Dijkstra, 1976; Gries 1981]:

Program positions are also annotated by assertions that characterize program
states.

The weakest precondition wp (S, Q) = P of a statement S maps a predicate
Q on a predicate P (wp is a predicate transformer).
wp (S, Q) = P characterizes the largest set of states such that if the
execution of S is begun in any state of P, then the execution is guaranteed to
terminate in a state of Q
(total correctness).

If P ⇒ wp (S, Q) then {P} S {Q} holds in Hoare Logic.

This concept is a more goal oriented proof method compared to Hoare Logic.
We need weakest precondition only in the definition of „non-interference“ in proof
for parallel programs.

Lecture Parallel Programming WS 2014/2015 / Slide 15e

Objectives:

Understand the notion of weakest precondition

In the lecture:

The notion is explained using some examples.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Examples for weakest preconditions
PPJ - 15f

1. P = wp (statement, Q)

2. i ≤ 0 = wp (i := i + 1 , i ≤ 1)

3. true = wp (if x >= y then z := x else z := y , z = max (x, y))

4. (y ≥ x) = wp (if x >= y then z := x else z := y , z = y)

5. false = wp (if x >= y then z := x else z := y , z = y-1)

6. (x = y+1) = wp (if x >= y then z := x else z := y , z = y+1)

7. wp (S, true) = the set of all states such that the execution of S begun in one
of them is guaranteed to terminate

Lecture Parallel Programming WS 2014/2015 / Slide 15f

Objectives:

Learn to find WPs

In the lecture:

The topics of the slide are explained:

• The formula.

• If i ≤ 0, then the execution of i:=i+1 terminates with i ≤ 1, while if i > 0 the execution of S cannot make i ≤ 1.

• Execution of S always sets z to max (x, y).

• Execution of S beginning with y ≥ x; sets z to y and execution of S beginning with y < x sets z to x, which is ≠ y.

• There is no start state for S such that it can set z less than y.

• Only if x = y+1 holds when execution of S begins, it will set z to y+1.

• Clear.

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Interleaving - used as an abstract execution model

Processes that are not blocked may be switched at arbitrary points in time.
A scheduling strategy reduces that freedom of the scheduler.

An example shows how different results are exhibited by switching processes differently.
Two processes operate on a common variable account :

Assume that the assignments a - f are atomic. Try any interleaved execution order of the two
processes on a single processor. Check what the value of account is in each case.

Assume the sequences of statements <a,b> and <d, e> (or <b, c> and <e, f>) are atomic
and check the results of any interleaved execution order.

We get the same variety of results , because there are no global variables in b or e
The coarser execution model is sufficient.

PPJ-17a

Process1: t1 = account; t1 = t1 + 10; account = t1;

Process2: t2 = account; t2 = t2 - 5; account = t2;

account = 50;

a b c

d e f

Lecture Parallel Programming WS 2014/2015 / Slide 17a

Objectives:

Motivation of the execution model

In the lecture:

• Explain the notion of atomic operations.

• Scheduling strategies are discussed later.

• Processes interfere via common, global variables.

• The desired result of a program execution may not depend on unjustified assumptions on the interleaving.

• Check all results the example may yield.

Questions:

• Which results may the example yield?

• Declare atomic statement sequences such that any interleaved execution yields the same result.

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Atomic actions

Atomic action : A sequence of (one or more) operations, the internal states of which can not be
observed because it has one of the following properties:

• it is a non-interruptable machine instruction ,

• it has the AMO property, or

• Synchronization prohibits, that the action is interleaved with those of other processes,
i. e. explicitly atomic.

At-most-once property (AMO):

The construct has at most one point where an other process can interact:

• Expression E:
E has at most one variable v, that is written by a different process, and
v occurs only once in E.

• Assignment x := E :
E is AMO and x is not read by a different process, or
x may be read by a different process, but E does not contain any global variable.

• Statement sequence S:
one statement in S is AMO and all other statements in S do not have any global variable.

PPJ-17b

Lecture Parallel Programming WS 2014/2015 / Slide 17b

Objectives:

Notion of atomic actions in the interleaving model

In the lecture:

• Explanation and examples for AMO.

• The example of PPJ-15 is varied.

Questions:

• Explain the AMO property using the terms "observable states" and "interleaved execution".

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Atomic by AMO
PPJ-17c

Interleaving analysis is simpler , if atomic decomposition is coarser .

Check AMO property for nested constructs. Consider the most enclosing one to be atomic.

assume x = 0; y = 0; z = 0; to be global

atomic AMO constructs < ... >:

< t = < < x > + < 1 > >; > < x = < 1 >; >

Examples :

interleaving actions of two processes:

a
p1: < t = 0; t = t + 1; >

p2: < s = 0; s = s + 1; >
b

a
p1: < x = 2; >

p2: < t = x + 1; >
b

b a
p1: x = < y + 1 > ;

p2: y = < x + 1 >;
d c

c a b
p1: x = <y> + <z>;

p2: <y = 1; > < z = 2; >;
d e

(1)

(3)

(2)

(4)

Lecture Parallel Programming WS 2014/2015 / Slide 17c

Objectives:

Understand: AMO constructs can be considered atomic

In the lecture:

The examples are explained using the definition of AMO.

Questions:

Which states can the processes in (1) to (4) reach depending on the execution order of the atomic actions?

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Interference between processes

Critical assertions characterize observable states of a process p:
Let {P} S {Q} be the statement sequence of process p with its pre- and postcondition.
Then Q is critical.
Let T be a statement in S that is not part of an atomic statement and R its postcondition;
then C = wp (T, R) is critical.

For every critical assertion of the proof of p, it has to be proven that
non-interference NI (A, C) holds for each assignment A of every other process q:

non-interference NI (A, C) holds between
assignment A: {D} x = e in q having precondition D in a proof of q and
assertion C on p, if the following can be proven in programming logic:

{ C ∧ D} A { C }
i. e. the execution of A does not interfere with C (can not change C) ,
provided that the precondition D allows to execute A in a state where C holds.

PPJ-17d

p:

q:

{C1} <... atomic action...> {C2} < ... > {C3} < ... > {C4}

{D1} x = ... {D2} y = ...

NI (A, C)

Lecture Parallel Programming WS 2014/2015 / Slide 17d

Objectives:

Interleaving and assertions on processes

In the lecture:

Explain

• NI,

• the role of pre(A),

• the more possibilities for interleaving the more proofs of NI are needed,

• assertions that are globally true simplify the proofs,

• it is easier to prove weaker assertions.

Questions:

• Why can assertions on non-observable states be ignored?

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: Interference between an assertion and an assignment
PPJ-17e

Consider processes p and q with assertions at observable states .

Consider a single critical assertion C in p and a single assignment A in q :

p: ...<...> { C} <...>...

q: ...<...> { d+1 > 0 } a = d + 1; {Q} <...>...
A

Does A interfere with C? Depends on C:

1. C: a == 1
{ a == 1 ∧ d + 1 > 0 } a = d + 1 { a == 1 } is not provable ⇒ interference

C C

2. C: a > 0
{ a > 0 ∧ d + 1 > 0 } a = d + 1 { a > 0 } is provable ⇒ non-interference

3. C: a==1 ∧ d<0
{ a==1 ∧ d<0 ∧ d+1>0 } a = d + 1 { a==1 ∧ d<0} is provable ⇒ non-interference

_____f_____

Lecture Parallel Programming WS 2014/2015 / Slide 17e

Objectives:

Understand interference checks

In the lecture:

The topics on the slide are explained using the example:

• Assertions are proven within their process and checked for non-interference;

• NI definition;

• 3 examples for interference check.

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Non-interference checks
PPJ - 17f

x := 0; y := 0;
{ x = 0 ∧ y = 0 }
co {x+1 = 1} x := x+1 {x=1} //

{y+1 = 1} y:= y+1 {y=1}
oc
{ x = 1 ∧ y = 1} => {x+y = 2}
z := x+y
{z = 2}

NI(a, C) holds for all 4 cases, e.g.

{ x+1 = 1 ∧ y+1 = 1} y:= y+1 {x+1 = 1 ∧ y = 1} =>
{x+1 = 1}C

C

x := 0; y := 0;
{ x = 0 ∧ y = 0 }
co {y+1 = 1} x := y+1 {x=1} //

{x+1 = 1} y:= x+1 {y=1}
oc
{ x = 1 ∧ y = 1} => {x+y = 2}
z := x+y
{z = 2}

NI(y:= x+1 , y+1 = 1) does not hold:

{ y+1 = 1 ∧ x+1 = 1} y:= x+1 {y+1 = 1}
is not correct

is not correct

Lecture Parallel Programming WS 2014/2015 / Slide 17f

Objectives:

Apply interference checks

In the lecture:

The interference checks of the examples are explained.

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Two inference rules for concurrent execution
PPJ - 17g

The statement for condition synchronization

<await B -> S>

causes the executing process to be blocked
until the condition B is true; then S is executed.
The whole statement is executed as an atomic
action; hence B holds at the begin of S.

{P ∧ B} S {Q}

{P} <await B -> S > {Q}

The statement for concurrent processes

co S 1 // ... // S n oc

executes the statements Si concurrently. It
terminates when all Si have terminated.

{Pi} Si {Qi}, 1 ≤ i ≤ n, are interference-free theorems

{P1 ∧ ... ∧ Pn} co S 1 // ... // S n oc {Q1 ∧ ... ∧ Qn}

Non-Interference is to be proven.

Lecture Parallel Programming WS 2014/2015 / Slide 17g

Objectives:

Understand the inference rules

In the lecture:

The two statements and their inference rules are explained.

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Avoiding interference
PPJ - 17h

1. disjoint variables :
Two concurrent processes p and q are interference-free if the set of variables p writes to is
disjoint from the set of variables q reads from and vice versa.

2. weakened assertions :
The assertions in the proofs of concurrent processes can in some cases be made
interference-free by weakening them.

3. atomic action :
A non-interference-free assertion C can be hidden in an atomic action.

4. condition synchronization :
A synchronization condition can make an interfering assignment interference-free.

p:: ... x := e ...

q:: ... S1 {C} S2 ...

p:: ... x := e ...

q:: ... <S1 {C} S2 > ...

p:: .. <await not C or B -> x:=e > ...
with B = wp (x:=e, C)

q:: ... S1 {C} S2 ...

p:: ... x := e ...

q:: ... S1 {C} S2 ...

S2 can not be
executed in this state

C holds after x:=eor

Lecture Parallel Programming WS 2014/2015 / Slide 17h

Objectives:

Techniques to reduce interference

In the lecture:

The techniques are explained using small examples.

• (4): Show that the await statement causes NI(x:=e, C) to hold.

