
©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
3. Monitors in general and in Java

Communication and synchronization of parallel processes

Communication between parallel processes: exchange of data by

• using a common, global variable,
only in a programming model with common storage

• messages in programming model distributed or common storage
synchronous messages: sender waits for the receiver (languages: CSP, Occam, Ada, SR)
asynchronous messages: sender does not wait for the receiver (languages: SR)

Synchronization of parallel processes:

• mutual exclusion (gegenseitiger Ausschluss):
certain statement sequences (critical regions) may not be executed by several processes at
the same time

• condition synchronization (Bedingungssynchronisation):
a process waits until a certain condition is satisfied by a different process

Language constructs for synchronization :
Semaphore, monitor, condition variable (programming model with common storage)
messages (see above)

Deadlock (Verklemmung):
Some processes are waiting cyclically for each other, and are thus blocked forever

PPJ-18

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitor - general concept
PPJ-19a

Monitor : high level synchronization concept introduced in
[C.A.R. Hoare 1974, P. Brinch Hansen 1975]

Definition :

• A monitor is a program module for concurrent programming with
common storage ; it encapsulates data with its operations.

• A monitor has entry procedures (which operate on its data);
they are called by processes ; the monitor is passive .

• The monitor guarantees mutual exclusion for calls of entry
procedures:
at most one process executes an entry procedure at any time.

• Condition variables are defined in the monitor and are
used within entry procedures for condition synchronization .

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Condition variables
PPJ-19b

A condition variable c is defined to have 2 operations to operate on it.
They are executed by processes when executing a call of an entry procedure.

• wait (c) The executing process leaves the monitor and
waits in a set associated to c,
until it is released by a subsequent call signal(c);
then the process accesses the monitor again and continues.

• signal (c): The executing process releases one arbitrary process that waits for c.

Which of the two processes immediately continues its execution
in the monitor depends on the variant of the signal semantics (see PPJ-22).
signal-and-continue :
The signal executing process continues its execution in the monitor.

A call signal (c) has no effect, if no process is waiting for c.

Condition synchronization usually has the form
if not B then wait (c); or while not B do wait (c);

The condition variable c is used to synchronize on the condition B .

Note the difference between condition variables and semaphores:
Semaphores are counters. The effect of a call V(s) on a semaphore is not lost if no
process is waiting on s.

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Example: bounded buffer

monitor Buffer
buf: Queue (k);
notFull, notEmpty: Condition ; 2 condition variables: state of the buffer

entry put (d: Data)
do length(buf) = k -> wait (notFull); od;
enqueue (buf, d);
signal (notEmpty);

end;

entry get (var d: Data)
do length (buf) = 0 -> wait (notEmpty); od;
d := front (buf); dequeue (buf);
signal (notFull);

end;
end;

process Producer (i: 1..n) d: Data;
loop d := produce(); Buffer.put(d); end;

end;

process Consumer (i: 1..m) d: Data;
loop Buffer.get(d); consume(d); end;

end;

PPJ-20

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Synchronization in a monitor

PPJ-21

entry procedures condition variables

get

put

notFull

notEmpty

process in the monitor

processes have executed
signal(c);
in case of signal-and-wait

processes wait
to execute an
entry procedure

processes have
executed wait(c),
they wait to be

semantic, they wait to
re-enter the monitor

by a signal(c)
allowed to re-enter

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of signal-wait semantics
PPJ-22

Processes compete for the monitor

• processes that are blocked by executing wait(c) ,

• process that is in the monitor, may be executing signal(c)

• processes that wait to execute an entry procedure

signal-and-exit semantics:
The process that executes signal terminates the entry procedure call and
leaves the monitor.
The released process enters the monitor immediately - without a state change in between

signal-and-wait semantics:
The process that executes signal leaves the monitor and waits to re-enter the monitor.
The released process enters the monitor immediately - without a state change in between
Variant signal-and-urgent-wait :

The process that has executed signal gets a higher priority
than processes waiting for entry procedures

signal-and-continue semantics:
The process that executes signal continues execution in the monitor.
The released process has to wait until the monitor is free. The state that held at the
signal call may be changed meanwhile; the waiting condition has to be checked again:

do length(buf) = k -> wait(notFull); od;

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Variants of signal-wait semantics: examples of execution
PPJ-22a

p-entry

p-signal

p-wait

signal-and-continue

signal(c)

{s}

{?}

3 processes:
p-entry waits to enter an entry procedure
p-signal executes signal(c)
p-wait has executed wait(c)

{s} state when signal(c) is executed
{s} may be modified here:

p-entry

p-signal

p-wait

signal-and-wait

signal(c)

{s}

{s}

p-entry

p-signal

p-wait

signal-and-urgent-wait

signal(c)

{s}

{s}

p-entry

p-signal

p-wait

signal-and-exit

signal(c)

{s}

{s}

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitors in Java: mutual exclusion

Objects of any class can be used as monitors

Entry procedures:
Methods of a class, which implement critical operations on instance variables
can be marked synchronized:

class Buffer
{ synchronized public void put (Data d) {...}

synchronized public Data get () {...}
...
private Queue buf;

}

If several processes call synchronized methods for the same object,
they are executed under mutual exclusion .
They are synchronized by an internal synchronization variable of the object (lock).

Non-synchronized methods can be executed at any time concurrently.

There are also synchronized class methods : they are called under mutual exclusion with
respect to the class.

synchronized blocks can be used to specify execution of a critical region with respect to an
arbitrary object.

PPJ-23

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Monitors in Java: condition synchronization

All processes that are blocked by wait are held in a single set;
condition variables can not be declared (there is only an implicit one)

Operations for condition synchronization:
are to be called from inside synchronized methods:

• wait() blocks the executing process;
releases the monitor object, and
waits in the unique set of blocked processes of the object

• notifyAll() releases all processes that are blocked by wait for this object;
they then compete for the monitor;
the executing process continues in the monitor
(signal-and-continue semantics).

• notify() releases an arbitrary one of the processes that are blocked by wait
for this object;
the executing process continues in the monitor
(signal-and-continue semantics);
only usable if all processes wait for the same condition .

Always call wait in loops , because with signal-and-continue semantics
after notify , notifyAll the waiting condition may be changed:

while (!Condition) try { wait(); } catch (InterruptedException e) {}

PPJ-24

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

A Monitor class for bounded buffers

class Buffer
{ private Queue buf; // Queue of length n to store the elements

public Buffer (int n) {buf = new Queue(n); }

synchronized public void put (Object elem)
{ // a producer process tries to store an element

while (buf.isFull()) // waits while the buffer is full
try {wait();} catch (InterruptedException e) {}

buf.enqueue (elem); // changes the waiting condition of the get method
notifyAll(); // every blocked process checks its waiting condition

}

synchronized public Object get ()
{ // a consumer process tries to take an element

while (buf.isEmpty()) // waits while the buffer is empty
try {wait();} catch (InterruptedException e) {}

Object elem = buf.first();
buf.dequeue(); // changes the waiting condition of the put method
notifyAll(); // every blocked process checks its waiting condition
return elem;

}
}

PPJ-25
©

 2
01

4
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Concurrency Utilities in Java 2
PPJ-25j

The Java 2 platform includes a package of concurrency utilities. These are
classes which are designed to be used as building blocks in building concurrent
classes or applications. ...

...

Locks - While locking is built into the Java language via the synchronized
keyword, there are a number of inconvenient limitations to built-in monitor
locks . The java.util.concurrent.locks package provides a high-
performance lock implementation with the same memory semantics as
synchronization , but which also supports specifying a timeout when
attempting to acquire a lock, multiple condition variables per lock, non-lexically
scoped locks, and support for interrupting threads which are waiting to acquire a
lock.

http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/index.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/locks/Condition.html

©
 2

00
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Concurrency Utilities in Java 2 (example)
PPJ-25k

class BoundedBuffer {
final Lock lock = new ReentrantLock(); explicit lock
final Condition notFull = lock.newCondition(); condition variables
final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[100];
int putptr, takeptr, count;

public void put (Object x) throws InterruptedException {
lock.lock(); explicit mutual exclusion
try { while (count == items.length) notFull.await(); specific wait

items[putptr] = x;
if (++putptr == items.length) putptr = 0;
++count;
notEmpty.signal(); specific signal

} finally { lock.unlock(); } explicit mutual exclusion
}

public Object get () throws InterruptedException {
lock.lock(); explicit mutual exclusion
try { while (count == 0) notEmpty.await(); specific wait

Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 0;
--count;
notFull.signal(); specific signal
return x;

} finally { lock.unlock(); } explicit mutual exclusion
}

}

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
3. Systematic Development of monitors

Monitor invariant

A monitor invariant (MI) specifies acceptable states of a monitor

MI has to be true whenever a process may leave or (re-)enter the monitor :

• after the initialization ,

• at the beginning and at the end of each entry procedure ,

• before and after each call of wait ,

• before and after each call of signal with signal-and-wait semantics (*),

• before each call of signal with signal-and-exit semantics (*).

Example of a monitor invariant for the bounded buffer:
MI: 0 <= buf.length() <= n

The monitor invariant has to be proven for the program positions
after the initialization, at the end of entry procedures, before calls of wait (and signal if (*)).

One can assume that the monitor invariant holds at the other positions
at the beginning of entry procedures, after calls of wait (and signal if (*)).

PPJ-26

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Design steps using monitor invariant

1. Define the monitor state, and design the entry procedures without synchronization
e. g. bounded buffer: element count; entry procedures put and get

2. Specify a monitor invariant
e. g.: MI: 0 <= length(buf) <= N

3. Insert conditional waits :
Consider every operation that may violate MI, e. g. enqueue(buf) ;
find a condition Cond such that the operation may be executed safely if Cond && MI holds,
e. g. { length(buf)<N && MI } enqueue(buf);
define one condition variable c for each condition Cond
insert a conditional wait in front of the operation:

do !(length(buf)<N) -> wait(c); od
Loop is necessary in case of signal-and-continue or the may in step 4!

4. Insert notification of processes:
after every state change that may make a waiting condition Cond true insert

signal(c) for the condition variable c of Cond
e. g. dequeue(buf); signal (c);
Too many signal calls do not influence correctness - they only cause inefficiency.

5. Eliminate unnecessary calls of signal (see PPJ-28)
Caution: Missing signal calls may cause deadlocks!
Caution: signal-and-continue semantics lacks control of state changes

PPJ-27
©

 2
00

8
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Bounded buffers
Derivation step 1: monitor state and entry procedures

monitor Buffer
buf: Queue; // state: buf, length(buf)

init buf = new Queue(n); end

entry put (d: Data) // a producer process tries to store an element

enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

d := front(buf);
dequeue(buf);

end;
end;

PPJ-27a

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 2: monitor invariant MI

monitor Buffer
buf: Queue; // state: buf, length(buf)

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element

enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

d := front(buf);
dequeue(buf);

end;
end;

PPJ-27b

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Bounded buffers

Derivation step 3: insert conditional waits
monitor Buffer

buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element

/* length(buf) < N && MI */
enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element

/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);

end;
end;

PPJ-27c

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 3: insert conditional waits

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);

end;
end;

PPJ-27ca
©

 2
01

4
be

i P
ro

f.
D

r.
 U

w
e

K
as

te
ns

Bounded buffers
Derivation step 4: insert notifications

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
/* length(buf)>0 */

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
/* length(buf)<N */

end;
end;

PPJ-27d

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Bounded buffers
Derivation step 4: insert notifications

monitor Buffer
buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
/* length(buf)>0 */ signal(notEmpty);

end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
/* length(buf)<N */ signal(notFull);

end;
end;

PPJ-27da

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Bounded buffers

Derivation step 5: eliminate unnecessary notifications
monitor Buffer

buf: Queue; // state: buf, length(buf)

notFull, notEmpty: Condition;

init buf = new Queue(n); end // MI: 0 <= length(buf) <= N

entry put (d: Data) // a producer process tries to store an element
do length(buf) >= N -> wait(notFull); od;
/* length(buf) < N && MI */
enqueue (buf, d);
if (length(buf) == 1) signal(notEmpty); // see PPJ-28

// not correct under signal-and-continue
end;

entry get (var d: Data) // a consumer process tries to take an element
do length(buf) <= 0 -> wait(notEmpty); od;
/* length(buf) > 0 && MI */
d := front(buf);
dequeue(buf);
if length(buf) == (N-1) -> signal(notFull); // see PPJ-28

// not correct under signal-and-continue
end;

end;

PPJ-27e

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Relevant state changes

Processes need only be awakened when the state change is relevant:
when the waiting condition Cond changes from false to true,
i.e. when a waiting process can be released.

These arguments do not apply for signal-and-continue semantics; there Cond may be
changed between the signal call and the resume of the released process.

E. g. for the bounded buffer states w.r.t signalling are considered:

PPJ-28

full empty
not full
and
not empty

signal (notFull); signal (notEmpty);

no signal call no signal call

no signal call

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Pattern: Allocating counted resources
PPJ-29

A monitor grants access to a set of k ≥ 1 resources of the same kind .
Processes request n resources, 1≤ n ≤ k, and return them after having used them.
Examples :

Lending bikes in groups (n ≥ 1), allocating blocks of storage (n ≥ 1),
Taxicab provider (n=1), drive with a weight of n ≥ 1 tons on a bridge

The identity of the resources may be relevant: use a boolean array avail[1] ... avail[k]

Monitor invariant requestRes(1) returnRes(1)

0 ≤ avail if/do (!(1≤avail)) wait(av); avail++; /* no wait! */

don’t give a non-ex. resource avail--; signal(av);

stronger invariant:

0 ≤ avail && 0 ≤ inUse if/do (!(1≤avail)) wait(av); if/do (!(1≤inUse)) wait(iu);
... and don’t take back more avail--; inUse++; avail++; inUse--;
than have been given signal(iu); signal(av);

Monitor invariant requestRes(n) returnRes(n)

0 ≤ avail do (!(n≤avail)) wait(av[n]); avail = avail + n; /* no wait! */

don’t give a non-ex. resource avail = avail - n; signal(av[1]); ... signal(av[avail]);

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitor for resource allocation

A monitor grants access to a set of k >= 1 resources of the same kind .
Processes request n resources, 1<=n<=k, and return them after having used them.

Assumption: Process does not return more than it has received => simpler invariant:

class Resources
{ private int avail; // invariant: avail >= 0

public Resources (int k) { avail = k; }

synchronized public void getElems (int n) // request n elements
{ while (avail<n) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
avail -= n;

}

synchronized public void putElems (int n) // return n elements
{ avail += n; // waiting is not needed because of assumption

notifyAll(); // notify() would be wrong!
}

}

PPJ-30

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Processes and main program for resource monitor

import java.util.Random;

class Client extends Thread
{ private Resources mon; private Random rand;

private int ident, rounds, maximum;

public Client (Resources m, int id, int rd, int max)
{ mon = m; ident = id; rounds = rd; maximum = max;

rand = new Random(); // a number generator determines how many
} // elements are requested in each round,

public void run () // and when they are returned
{ while (rounds > 0)

{ int m = Math.abs(rand.nextInt()) % maximum + 1;
mon.getElems (m);
try { sleep (Math.abs(rand.nextInt()) % 1000 + 1); }

catch (InterruptedException e) {}
mon.putElems (m);
rounds--;

}
}

}

public class TestResource
{ public static void main (String[] args)

{ int avail = 20;
Resources mon = new Resources (avail);
for (int i=0; i<5; i++)

new Client (mon, i, 4, avail).start();
}

}

PPJ-31

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 1)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32a

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()

nr++;

end;

entry releaseRead()
nr--;

end;

entry requestWrite()

nw++;

end;

entry releaseWrite()
nw--;

end;
end;

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 2)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32b

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()

nr++;

end;

entry releaseRead()
nr--;

end;

entry requestWrite()

nw++;

end;

entry releaseWrite()
nw--;

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step3)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32c

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;

end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Readers-Writers problem (Step 4)

A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32d

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;
{ RW && nr>=0}
{ may be nr==0 }

signal(okToWrite);
end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;
{ nr==0 && nw==0}
signal(okToWrite);
signal_all(okToRead);

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers-Writers problem (Step 5)
A monitor grants reading and writing access to a data base:
readers shared , writers exclusive .

PPJ-32e

monitor ReadersWriters
nr: int; // number readers
nw: int; // number writers

init nr=0; nw=0; end

entry requestRead()
do !(nw==0)

-> wait(okToRead);
od;
{ nw==0 && RW }
nr++;
{ RW }

end;

entry releaseRead()
{ RW && nr>0} nr--;
{ RW && nr>=0}
{ may be nr==0 }
if nr==0
-> signal(okToWrite);

end;

entry requestWrite()
do !(nr==0 && nw<1)

-> wait(okToWrite);
od;
{ nr==0 && nw<1 && RW }
nw++;
{ RW }

end;

entry releaseWrite()
{ RW && nw==1} nw--;
{ nr==0 && nw==0}
signal(okToWrite);
signal_all(okToRead);

end;
end;

Monitor invariant RW:

(nr == 0 || nw == 0) && nw <= 1

©
 2

00
8

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Readers/writers monitor in Java

class ReaderWriter
{ private int nr = 0, nw = 0;

// monitor invariant RW: (nr == 0 || nw == 0) && nw <= 1
synchronized public void requestRead ()
{ while (nw > 0) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
nr++;

}
synchronized public void releaseRead ()
{ nr--;

if (nr == 0) notify (); // awaken one writer is sufficient
}

synchronized public void requestWrite ()
{ while (nr > 0 || nw > 0) // negated waiting condition

try { wait(); } catch (InterruptedException e) {}
nw++;

}
synchronized public void releaseWrite ()
{ nw--;

notifyAll (); // notify 1 writer and all readers would be sufficient!
}

}

PPJ-33

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Method: rendezvous of processes

Processes pass through a sequence of states and interact with each other.
A monitor coordinates the rendezvous in the required order .

Design method :
Specify states by counters ;
characterize allowed states by invariants over counters;
derive waiting conditions of monitor operations from the invariants;
substitute counters by binary variables .

Example: Sleeping Barber :
In a sleepy village close to Paderborn a barber is sleeping while waiting for customers
to enter his shop. When a customer arrives and finds the barber sleeping, he awakens him,
sits in the barber‘s chair, and sleeps while he gets his hair cut. If the barber is busy when a
customer arrives, the customer sleeps in one of the other chairs. After finishing the haircut,
the barber gets paid, lets the customer exit, and awakens a waiting customer, if any.

2 kinds of processes: barber (1 instance), customer (many instances)

2 rendezvous: haircut and customer leaves

The task is also an example for the Client/Server pattern.

PPJ-34

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Monitor design for the Sleeping Barber problem (step 1)

PPJ-35

cinchair

cleave

bavail

bbusy

bdone

processescustomer

getHairCut

processbarber

getNextCustomer

finishedCut

Monitor for barber shop

bclose

entry proc getHairCut:

cinchair++;
cleave++;

entry proc getNextCustomer:

bavail++;
bbusy++;

entry proc finishedCut:

bdone++;
bclose++;

Counters represent states, incremented in entry procedures:

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Monitor invariant for the Sleeping Barber problem (step 2)
PPJ-35a

cinchair

cleave

bavail

bbusy

bdone

processescustomer

getHairCut

processbarber

getNextCustomer

finishedCut

Monitor for barber shop

bclose

Invariants over counters:

C1: cinchair >= cleave and
bavail >= bbusy >= bdone >= bclose

C2: bavail >= cinchair >= bbusy

C3: bdone >= cleave >= bclose

Monitor invariant: BARBER: C1 and C2 and C3

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Waiting conditions for the Sleeping Barber problem (step 3)
PPJ-36

entry proc getHairCut:

do not (bavail > cinchair) -> wait (b); done;
cinchair++;

do not (bdone > cleave) -> wait (o); done;
cleave++;

entry proc getNextCustomer:

bavail++;

do not (cinchair > bbusy) -> wait (c); done;
bbusy++;

entry proc finishedCut:

bdone++;

do not (cleave > bclose) -> wait (e); done;
bclose++;

Monitor invariant: BARBER: C1 and C2 and C3:

C1: cinchair >= cleave and
bavail >= bbusy >= bdone >= bclose guaranteed by execution order

C2: bavail >= cinchair >= bbusy leads to 2 waiting conditions

C3: bdone >= cleave >= bclose leads to 2 waiting conditions

©
 2

00
9

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Substitute counters (step 3a)
PPJ-37

entry proc getHairCut:

do not (barber > 0) -> wait (b); done;
barber--; chair++;

do not (open > 0) -> wait (o); done;
open--; exit++;

entry proc getNextCustomer:

barber++;

do not (chair > 0) -> wait (c); done;
chair--;

entry proc finishedCut:

open++;

do not (exit > 0) -> wait (e); done;
exit--;

Old invariants:
C2: bavail >= cinchair >= bbusy
C3: bdone >= cleave >= bclose

New invariants:
C2: barber >= 0 && chair >= 0
C3: open >= 0 && exit >= 0

new binary variables:
barber = bavail - cinchair
chair = cinchair - bbusy
open = bdone - cleave
exit = cleave - bclose

value ranges: {0, 1}

increment operations and conditions are substituted:

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns
Signal operations for the Sleeping Barber problem (step 4)

PPJ-37a

entry proc getHairCut:

do not (barber > 0) -> wait (b); done;
barber--; chair++; signal (c);

do not (open > 0) -> wait (o); done;
open--; exit++; signal (e);

entry proc getNextCustomer:

barber++; signal (b);

do not (chair > 0) -> wait (c); done;
chair--;

entry proc finishedCut:

open++; signal (o);

do not (exit > 0) -> wait (e); done;
exit--;

Old invariants:
C2: bavail >= cinchair >= bbusy
C3: bdone >= cleave >= bclose

New invariants:
C2: barber >= 0 && chair >= 0
C3: open >= 0 && exit >= 0

new binary variables:
barber = bavail - cinchair
chair = cinchair - bbusy
open = bdone - cleave
exit = cleave - bclose

value ranges: {0, 1}

insert call signal (x) call where a condition of x may become true:

