5. Data Parallelism: Barriers

Many processes execute the same operations at the same time on different data; usually on elements of regular data structures: arrays, sequences, matrices, lists.

Data parallelism as an architectural model of parallel computers:
vector machines, e. g. Cray
SIMD machines (Single Instruction Multiple Data), e. g. Connection Machine, MasPar GPUs (Graphical Processing Units); massively parallel processors on graphic cards

Data parallelism as a programming model for parallel computers:

- computations on arrays in nested loops
- analyze data dependences of computations, transform and parallelize loops
- iterative computations in rounds, synchronize with Barriers
- systolic computations: 2 phases are iterated: compute - shift data to neighbour processes

Applications mainly in technical, scientific computing, e. g.

- fluid mechanics
- image processing
- solving differential equations
- finite element method in design systems

Data parallelism as an architectural model

SIMD machine: Single Instruction Multiple Data

- very many processors, massively parallel e. g. 32×64 processor field
- local memory for each processor
- same instructions in lock step
- fast communication in lock step

program

field of processors
- fixed topology, usually a grid
- machine types e. g. Connection Machine, MasPar

Data parallelism as a programming model

- regular data structures (arrays, lists) are mapped onto a field of processors
- processes execute the same program on individual data in lock step
- communication with neighbours in the same direction in lock step
simple example matrix addition:
sequential:

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \quad \text { for }(j=0 ; j<M ; j++) \\
& \quad c[i, j]=a[i, j]+b[i, j] ;
\end{aligned}
$$

distribute A, B
$c=a+b$

- these can be parallelized directly, since there are no data dependences
- data mapping is trivial: array element [i,j] on process [i,j]
- communication is not needed
- no algorithmic idea is needed

Example prefix sums

input: sequence a of numbers;
output: sequence s of sums of the prefixes of a

parallel algorithmic idea:
round

$$
r=0
$$

1

Example prefix sums (2)

input:sequence a of numbers; output:sequence s of sums of the prefixes of a $s[i]=\sum_{j=0} a[j]$
parallel algorithmic idea:
round
$r=0$

Proof for process $\mathbf{p}=0$.. $\mathrm{n}-1$
Invariant SUM: $s[p]=a[p-d+1]+\ldots+a[p]$ with $d=1,2, \ldots, m<=n$ distance before next round Induction begin: $d=1 ; s[p]=a[p]$ holds by initialization
induction step: computation $s[p]=s[p-d]+\quad s[p]$ $a[p-2 d+1]+\ldots+a[p-d]+a[p-d+1]+\ldots+a[p]$
substitution of 2d by d implies SUM

Prefix sums: applied methods

- computational scheme reduction:
all array elements are comprised using a reduction operation (here: addition)
- iterative computation in rounds:
in each round all processes perform a computation step
- duplication of distance:
data is exchanged in each round with a neighbour at twice the distance as in the previous round
- barrier synchronization:
processes may not enter the next round, before all processes have finished the previous one

Barriers

Several processes meet at a common point of synchronization
Rule: All processes must have reached the barrier (for the j-th time), before one of them leaves it (for the j-th time).

Applications:

- iterative computations, where iteration j uses results of iteration $\mathrm{j}-1$
- separation of computational phases

Scheme:

```
public void run ()
{ do { computeNewValues (i);
        b.barrier();
        }
    while (!converged);
}
```

Implementation techniques for barriers:

- central controller: monitor or coordination process
- worker processes coordinated as a tree
- worker processes symmetrically coordinated (butterfly barrier, dissemination barrier)

Barrier implemented by a monitor

Monitor stops a given number of processes and releases them together:

```
class BarrierMonitor
{ private int processes // number of processes to be synchronized
            arrived = 0; // number of processes arrived at the barrier
    public BarrierMonitor (int procs)
    { processes = procs; }
    synchronized public barrier ()
    { arrived++;
        if (arrived < processes)
            try { wait(); } catch (InterruptedException e) {}
                                    // exception destroys barrier behaviour
        else
        { arrived = 0;
            notifyAll();
} } }
```


Distributed tree barrier

Barrier synchronization of the worker processes organized as a binary tree.
Bottleneck of central synchronization is avoided.

2 synchronization variables (flags) at each node:
arrived: all processes in a subtree have arrived, is propagated upward
continue: all processes in a subtree may continue, is propagated downward
disadvantage:
different code is needed for root, inner nodes, and for leafs

2 Rules for Synchronization Using Flags

Flag for synchronization between exactly 2 processes
One process waits until the flag is set.
The other process sets the flag.
May be implemented by a monitor in Java.
Flag rules: 1. The process that waits for a flag resets it.
2. A flag that is set may not be set again before being reset.

Consequence: no state change will be lost.
process p
process q
resets $\mathrm{f}:=0$
$f==0 \quad f==1 \quad f==0$
ensures $f==0$ before sets $f:=1$

Distributed tree barrier implementation

2 synchronization variables (flags) at each node:
arrived: all processes in a subtree have arrived propagated upward
continue: all processes in a subtree may continue propagated downward
initially all flags are reset
 code for an inner node:

```
execute this.task();
wait for left.arrived; reset left.arrived;
\(\mathbf{x}\)
wait for right.arrived; reset right.arrived;
set this.arrived;
wait for this.continue; reset this.continue;
set left.continue;
X
x
set right.continue; x
```

leaf
reaf root

Symmetric, distributed barrier (dissemination)

Processes synchronize pairwise in rounds with doubled distances.

N processes are synchronized after r rounds if $N<=2^{r}$

> In round s
> process i indicates its arrival and then waits
> for the arrival of process $\left(i+N-2^{s-1}\right)$ modulo N :

round
1

2

3

After r rounds each process is synchronized with each other. Proof idea: For each process i each other process occurs in a tree of processes which have synchronized (in)directly with i.

Symmetric, distributed barrier: implementation

In round s
process i indicates its arrival and
$\left(i+N-2^{s-1}\right)$ modulo $N \quad i$
waits for the arrival of process ($\mathrm{i}+\mathrm{N}-2^{\mathrm{s}-1}$) modulo N

Code for each process:

```
execute this.task();
// synchronize:
s = 0;
while (N > 2s)
    s++;
    wait for f==0; set f=1;
    partner=p[(i + N - 2 s-1}) modulo N]
    wait partner.f; reset partner.f=0
```


Prefix sums with barriers

```
class PrefixSum extends Thread
{ private int procNo; // number of process
    private BarrierMonitor bm; // barrier object
    public PrefixSum (int p, BarrierMonitor b)
    { procno = p; bm = b; }
    public void run ()
    { int addIt, dist = 1;
        s[procNo] = a[procNo]; // initialize result array
        bm.barrier();
        // invariant SUM: s[procNo] == a[procNo-dist+1]+...+a[procNo]
        while (dist < N)
        { if (procNo - dist >= 0)
            addIt = s[procNo - dist]; // value before overwritten
            bm.barrier();
            if (procNo - dist >= 0)
                s[procNo] += addIt;
            bm.barrier();
            dist = dist * 2; // doubled distance
} } }
```


Prefix sums in a synchronous parallel programming model

Notation in Modula-2* with synchronous (and asynchronous) loops for parallel machines

```
VAR a, s, t: ARRAY [0..N-1] OF INTEGER;
VAR dist: CARDINAL;
BEGIN
```

 FORALL i: [0..N-1] IN SYNC
 s[i] := a[i];
 END;
 dist := 1;
 WHILE dist < N
 parallel loop in lock step
 FORALL i: [0..N-1] IN SYNC
 IF (i-dist) >= 0 THEN
 t[i] \(:=s[i\) - dist];
 \(s[i] \quad:=s[i]+t[i] ;\)
 END
 END;
 dist : = dist * 2;
 END
 END

Finding list ends: data parallel approach

input: int array link stores lists; link[i] contains the index of the successor or nil output: int array last; last[i] contains the index of the last element of list link[i]
method: worker process i computes last[i] = last[last[i]] in log N rounds

```
int d = 1;
last[i] = link[i];
barrier
while (d < N)
{ int newlast = nil;
        if ( last[i] != nil &&
        last[last[i]] != nil)
            newlast = last[last[i]];
        barrier
        if (newlast != nil)
        last[i] = newlast;
    barrier
    d = 2*d;
}
```

last[i] points to the end of those lists which are not longer than d

not longer than d

5.2 / 6. Data Parallelism: Loop Parallelization

Regular loops on orthogonal data structures - parallelized for data parallel processors

Development steps (automated by compilers):

- nested loops operating on arrays, sequential execution of iteration space
- analyze data dependences data-flow: definition and use of array elements
- transform loops
keep data dependences forward in time
- parallelize inner loop(s)
map to field or vector of processors
- map arrays to processors
such that many accesses are local, transform index spaces

```
DECLARE B[0..N,0..N+1]
FOR I := 1 ..N
    FOR J := 1 .. I
    B[I,J] :=
        B[I-1,J]+B[I-1,J-1]
    END FOR
END FOR
```


Iteration space of loop nests

Iteration space of a loop nest of depth n :

- n -dimensional space of integral points (polytope)
- each point $\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{n}\right)$ represents an execution of the innermost loop body
- loop bounds are in general not known before run-time
- iteration need not have orthogonal borders
- iteration is elaborated sequentially
example:
computation of Pascal's triangle

```
DECLARE B[-1..N, -1..N]
FOR I := O .. N
    FOR J := O .. I
        B[I,J] :=
            B[I-1,J] +B[I-1,J-1]
    END FOR
END FOR
```


Examples for Iteration spaces of loop nests

FOR I := 0 .. N FOR J := O .. I

FOR I : = 0 .. N FOR J := I..I+M $\mathrm{M}=3, \mathrm{~N}=4$

FOR I : = 0 .. N FOR J := O..I BY 2

FOR I := O..N BY 2
FOR $J:=0$.. I

FOR I := 0 .. M+N
FOR $J:=\max (0, I-M)$
$\min (I, N)$

Data Dependences in Iteration Spaces

Data dependence from iteration point i1 to i2:

- Iteration i1 computes a value that is used in iteration i2 (flow dependence)
- relative dependence vector $\mathbf{d}=\mathrm{i} 2-\mathrm{i} 1=\left(\mathrm{i} 2_{1}-\mathrm{i} 1_{1}, \ldots, \mathrm{i} 2_{\mathrm{n}}-\mathrm{i} 1_{\mathrm{n}}\right)$
holds for all iteration points except at the border
- Flow-dependences can not be directed against the execution order, can not point backward in time: each dependence vector must be lexicographically positive, i. e. $\mathbf{d}=\left(0, \ldots, 0, d_{i}, \ldots\right), d_{i}>0$

Example:
Computation of Pascal's triangle

```
DECLARE B[-1..N,-1..N]
```

```
FOR I := O .. N
    FOR J := O .. I
        B[I,J] :=
        B[I-1,J]+B[I-1, J-1]
        END FOR
END FOR
```


Loop Transformation

The iteration space of a loop nest is transformed to new coordinates. Goals:

- execute innermost loop(s) in parallel
- improve locality of data accesses;
in space: use storage of executing processor, in time: reuse values stored in cache
- systolic computation and communication scheme

Data dependences must point forward in time, i.e. lexicographically positive and not within parallel dimensions
linear basic transformations:

- Skewing: add iteration count of an outer loop to that of an inner one
- Reversal: flip execution order for one dimension
- Permutation: exchange two loops of the loop nest

SRP transformations (next slides)
non-linear transformations, e. g.

- Scaling: stretch the iteration space in one dimension, causes gaps
- Tiling: introduce additional inner loops that cover tiles of fixed size

Transformations

 of
data
REAL $B(1: n, 0: m)$
convex polytope

DO $i=0, m-1$
DO $j=0, k-1$
END
END
loop nests

Transformations defined by matrices

Transformation matrices: systematic transformation, check dependence vectors

Reversal

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i}{j}=\binom{i}{-j}=\left(\begin{array}{l}
i \\
i^{\prime} \\
j^{\prime}
\end{array}\right)
$$

Skewing $\quad\left(\begin{array}{ll}1 & 0 \\ f & 1\end{array}\right) *\binom{i}{j}=\binom{i}{f \times i+j}=\binom{i^{\prime}}{j}$

Permutation $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) *\binom{i}{j}=\binom{j}{i}=\binom{i^{\prime}}{j}$

Reversal

Iteration count of one loop is negated, that dimension is enumerated backward

general transformation matrix

2-dimensional:

$$
\begin{gathered}
\text { old loop variables } \\
\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-j}=\binom{\mathrm{ir}}{\mathrm{jr}} \\
\text { for ir }=0 \text { to } \mathrm{m} \\
\text { for jr }=-\mathrm{N} \text { to } 0
\end{gathered}
$$

original
transformed

Skewing

The iteration count of an outer loop is added to the count of an inner loop; iteration space is shifted; execution order of iteration points remains unchanged
general transformation matrix:

for $i=0$ to M
for $j=0$ to N
original

2-dimensional:

> | old loop variables |
| ---: |
| $\left(\begin{array}{ll}1 & 0 \\ f & 1\end{array}\right) *\binom{\mathrm{i}}{j}=\binom{\mathrm{i}}{f^{*} \mathrm{i}+\mathrm{j}}=\binom{$ is }{$j \mathrm{j}}$ |

```
for is = 0 to M
    for js = f*is to N+f*is
```

transformed

Permutation

Two loops of the loop nest are interchanged; the iteration space is flipped;
the execution order of iteration points changes; new dependence vectors must be legal.
general transformation matrix:

for $i=0$ to M
for $j=0$ to N
original

2-dimensional:

loop variables
old new

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\binom{i}{j}=\binom{j}{i}=\binom{i p}{j p}
$$

for ip $=0$ to N for jp $=0$ to M transformed

Use of Transformation Matrices

- Transformation matrix \mathbf{T} defines new iteration counts in terms of the old ones: $\mathbf{T} * \mathbf{i}=\mathbf{i}^{\prime}$

$$
\text { e. g. Reversal } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{\mathrm{i}}{\mathrm{j}}=\binom{\mathrm{i}}{-\mathrm{j}}=\binom{\mathrm{i}^{\prime}}{\mathrm{j}}
$$

- Transformation matrix \mathbf{T} transforms old dependence vectors into new ones: \mathbf{T} * $\mathbf{d}=\mathbf{d}^{\prime}$

$$
\text { e.g. } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{1}{1}=\binom{1}{-1}
$$

- inverse Transformation matrix \mathbf{T}^{-1} defines old iteration counts in terms of new ones, for transformation of index expressions in the loop body: $\mathbf{T}^{-1} * \mathbf{i}^{\prime}=\mathbf{i}$

$$
\text { e. g. } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) *\binom{i^{\prime}}{j^{\prime}}=\binom{\mathrm{i}^{\prime}}{-\mathrm{j}^{\prime}}=\binom{\mathrm{i}}{\mathrm{j}}
$$

- concatenation of transformations first T_{1} then $T_{2}: T_{2}{ }^{*} T_{1}=T$
e. g.

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) *\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Inequalities Describe Loop Bounds

The bounds of a loop nest are described by a set of linear inequalities.
Each inequality separates the space in "inside and outside of the iteration space":

positive factors represent upper bounds negative factors represent lower bounds

1, 4: $\mathrm{j} \leq \min (\mathrm{i}, \mathrm{N})$
3: $0 \leq j$
example 2

1+3: $0 \leq i$
2: $\quad i \leq M$

Transformation of Loop Bounds

The inverse of a transformation matrix $\mathbf{T}^{\mathbf{- 1}}$ transforms a set of inequalities: $\mathbf{B}{ }^{*} \mathbf{T}^{\mathbf{- 1}} \mathbf{i} \leq \mathbf{c}$

| skewing inverse | B | T^{-1} | $\mathrm{~B}^{*} \mathrm{~T}^{-1}$ |
| :--- | :--- | :--- | :--- | :--- |

example 1

$$
\left(\begin{array}{rr}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{array}\right) *\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{rc}
-1 & 0 \\
1 & 0 \\
1 & -1 \\
-1 & 1
\end{array}\right)
$$ new bounds:

$$
B^{*} T^{-1}
$$

$\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \quad\left(\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right)$

Solution of the Transformation and Parallelization Example

5.:

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}
$$

$\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\binom{1}{0}=\binom{1}{1}$
6.: Inverse $\left(\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right)$
7. Bounds: B

C
$B^{*} T^{-1}$

8. for ip $=0$ to $M+N$

```
    for jp = max (0, ip-M) to min (ip, N)
        a[jp, ip-jp] = (a[jp, ip-jp-1] + a[jp-1, ip-jp]) / 2;
```


Transformation and Parallelization

Iteration space
original transformed

DECLARE B[-1..N, -1..N]
FOR I := 0 .. N
FOR J := 0 .. I
$\mathrm{B}[\mathrm{I}, \mathrm{J}]:=$
$B[I-1, J]+B[I-1, J-1]$
END FOR
END FOR

$$
(\mathrm{I}, \mathrm{~J})->(\mathrm{I}, \mathrm{~J}-\mathrm{I})=(\mathrm{IS}, \mathrm{JS})
$$

parallel processor map JS mod 2

DECLARE B[-1..N, -1. .N]
FOR IS :=0.. N
FOR JS :=-IS .. 0 B[IS,JS+IS] := B[IS-1, JS+IS $]+B[I S-1, J S-1+I S]$
END FOR
END FOR

Data Mapping

Goal:

Distribute array elements over processors, such that as many accesses as possible are local.

Index space of an array:
n-dimensional space of integral index points (polytope)

- same properties as iteration space
- same mathematical model
- same transformations are applicable (Skewing, Reversal, Permutation, ...)
- no restrictions by data dependences

Data distribution for parallel loops

index space of B
original transformed skewing $f=-1$


```
DECLARE B[-1..N,-1..N]
FOR IS := 0.. N
    FOR JS := -IS .. 0
        B[IS,JS+IS] :=
            B[IS-1,JS+IS] +B[IS-1,JS-1+IS]
        END FOR
    END FOR
                                    DECLARE B[-1..N, -N..N]
                                    B[IS,JS] :=
                                    B[IS-1, JS-1] +B [IS-1, JS-1]
```

