
©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

7. Asynchronous Message Passing

Processes send and receive messages via channels

Message : value of a composed data type or object of a class

Channel : queue of arbitrary length, containing messages

operations on a channel:

• send (b) : adds the message b to the end of the queue of the channel;
does not block the executing process (in contrast to synchronous send)

• receive() : yields the oldest message and deletes it from the channel;
block s the executing process as long as the channel is empty.

• empty() : yields true, if the channel is empty; the result is not necessarily up-to-date.

send and receive are executed under mutual exclusion.

PPJ-60

sendreceive

©
 2

01
0

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Channels implemented in Java

public class Channel
{ // implementation of a channel using a queue of messages

private Queue msgQueue;

public Channel ()
{ msgQueue = new Queue (); }

public synchronized void send (Object msg)
{ msgQueue.enqueue (msg); notify() ; } // wake a receiving process

public synchronized Object receive ()
{ while (msgQueue.empty())

try { wait() ; } catch (InterruptedException e) {}
Object result = msgQueue.front(); // the queue is not empty
msgQueue.dequeue();
return result;

}

public boolean empty ()
{ return msgQueue.empty (); }

}

All waiting processes wait for the same condition => notify() is sufficient.
After a notify-call a new receive-call may have stolen the only message => wait loop is needed

PPJ-61

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Processes and channels

link :
one sender is connected to one receiver ;
e. g. processes form chains of
transformation steps (pipeline)

input port of a process:
many senders - one receiver;
channel belongs to the receiving process;
e. g. a server process receives tasks
from several client processes

output port of a process:
one sender - many receivers ;
channel belongs to the sending process;
e. g. a process distributes tasks to many servers
(unusual structure)

pair of request and reply channels;
one process requests - the others replies;
tight synchronization,
e. g. between client and server

PPJ-62

pq

request

reply

S
er

ve
r

C
lie

nt

link

input port

output port

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Termination conditions
PPJ-62a

When system of processes terminates the following conditions must hold:

1. All channels are empty.

2. No processes are blocked on a receive operation.

3. All processes are terminated .

Otherwise the system state is not well-defined , e.g. task is not
completed, some operations are pending.

Problem:
In general, the processes do not know the global system state .

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Message structures
PPJ-63

A message object may have arbitrary structure suitable for the particular purpose :

empty

kind

kind

argument
vector

synchronization only

different kinds of messages, without data
e. g. signal different kinds of events

different kinds of messages with data
e. g. number and or identities of resources

special case:
a channel on which the sender expects a reply

Operations on messages:
constructors

setKind (k), getKind ()

setArg (ind, val), getArg (ind), getArgList ()

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Client / server: basic channel structure

One server process responds to requests of several client processes

request channel:
input port of the server

reply channel:
one for each client (input port),
may be sent to the server included in the request message

Application : server distributes data or work packages on requests

PPJ-64

request reply

server

client

reply client

...

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Server processes: different kinds of operations

Different requests (operations) are represented by different kinds of messages .

The server processes the requests strictly sequentially ;
thus, it is guaranteed that critical sections are not executed interleaved .

Termination: terminate clients, empty channel, empty queue.

PPJ-65

request

server

pending

If a request requires a specific condition
it is stored in a queue until the condition holds.

put put get put

reply channels

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Different kinds of operations on different channels

Server must not block on an empty input port while another port may be non-empty:

while (running) {
if (!putPort.empty()) { msg = putPort.receive(); ... }
if (!getPort.empty()) { msg = getPort.receive(); ... }
if (!pending.empty()) { msg = pending.dequeue(); ... }

}

PPJ-66

put requests

server

pending

get requests

reply channels

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Several servers

Several server processes, several client processes, several request channels

Termination: empty request channels, empty queues, empty reply channels

Caution: a receive on a channel may block a server!

PPJ-67

put

reply

server

client

reply client

...

server

...

get

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Receive without blocking

If several processes receive from a channel ch , then the check

if (!ch.empty()) msg = ch.receive();

may block.
That is not acceptable when several channels have to be checked in turn.
Hence, a new non-blocking channel method is introduced:

public class Channel
{ ...

public synchronized Object receiveMsgOrNull ()
{ if (msgQueue.empty()) return null;

Object result = msgQueue.front();
msgQueue.dequeue();
return result;

} }

Checking several channels:

while (msg == null)
{ if ((msg = ch1.receiveMsgOrNull()) == null)

if ((msg = ch2.receiveMsgOrNull()) == null)
Thread.sleep (500);

}

PPJ-68

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Conversation sequences between client and server

Example for an application pattern is „file servers“:

• several equivalent servers respond to requests of several clients

• a client sends an opening request on a channel common for all servers (open)

• one server commits to the task; it then leads a conversation with the client according to a
specific protocol , e. g.
(open openReply) ((read readReply) | (write writeReply))* (close closeReply)

• reply channels are contained in the open and openReply messages.

PPJ-69

server

access

server access accessReply client

open

accessReply client

... ...

accessReply

openReply

accessReply

©
 2

01
5

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Active monitor (server) vs. passive monitor

active monitor passive monitor

1. program structure
active process passive program module

2. client communication
request - reply via channels calls of entry procedures

3. server operations
kinds of messages and/or entry procedures
different channels

4. mutual exclusion
requests are handled guaranteed for entry procedure
sequentially calls

5. delayed service
queue of pending requests client processes are blocked
replies are delayed condition variables, wait - signal

6. multiple servers
may cooperate on the multiple monitors are not related
same request channels

PPJ-70

