
©
 2

01
2

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

8. Messages in Distributed Systems
Distributed processes: Broadcast in a net of processors

PPJ-71

1

2 3

4

5 6 7 6 7

Net: bi-directional graph, connected, irregular structure;
node: a process
edge: a pair of links (channels) which connect two nodes in both directions

A node knows only its direct neighbours and the links to and from each neighbour:

Broadcast:
A message is sent from an initiator node such that it reaches every node in the net.
Finally all channels have to be empty.

Problems:

• graph may have cycles

• nodes do not know the graph beyond their neighbours

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Broadcast method

Method (for all nodes but the initiator node):

1. The node waits for a message on its incoming links.

2. After having received the first message it sends a copy to all of its n neighbours -
including to the sender of the first message

3. The node then receives n-1 redundant messages from the remaining neighbours

All nodes are finally reached because of (2).

All channels are finally empty because of (3).

The connection to the sender of the first message is considered to be an edge of a spanning
tree of the graph. That information may be used to simplify subsequent broadcasts.

PPJ-72

total number of messages: 2*|edges|

initiator

1

2 3

4

5 6 7

©
 2

00
8

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Probe and echo in a net

Task: An initiator requests combined information from all nodes in the graph (probe).
The information is combined on its way through the net (echo);
e. g. sum of certain values local to each node, topology of the graph, some global state.

Method (roughly):

• distribute the probes like a broadcast,

• let the first reception determine a spanning tree,

• return the echoes on the spanning tree edges.

PPJ-73

initiator

E E
E

E E E1

2 3

4

5 6 7

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Probe and echo: detailed operations

Operations of each node (except the initiator):

• The node has n neighbours with an incoming and outgoing link to each of them.

• After having received the first probe
from neighbour s , send a
probe to all neighbours except to s ,
i. e. n - 1 probes .

• Each further incoming probe
is replied with a dummy message.

• Wait until n - 1 dummies and echoes
have arrived.

• Then combine the echoes and send it to s .

2 messages are sent on each spanning tree edge .

4 messages are sent on each other edge .

PPJ-74

P

1. P
P

P

E

E

D

P

D

E

©
 2

00
3

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

Connections via ports and sockets

Port:
• an abstract connection point of a computer; numerically encoded

• a sever process is determined to respond to a certain port, e. g. port 13: date and time

• client processes on other machines may send requests via machine name and port number

Socket:
• Abstraction of network software for communication via ports.

• Sockets are created from machine address and port number.

• Several sockets on one port may serve several clients.

• I/O streams can be setup on a socket.

PPJ-75

client

client

host

server

sockets
port

I/O streams

I/O streams

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Sockets and I/O-streams

Get a machine address:

InetAddress addr1 = InetAddress.getByName ("java.sun.com"),
addr2 = InetAddress.getByName ("206.26.48.100"),
addr3 = InetAddress.getLocalHost();

Client side : create a socket that connects to the server machine:

Socket myServer = new Socket (addr2, port);

Setup I/O-streams on the socket:

BufferedReader in =
new BufferedReader

(new InputStreamReader (myServer.getInputStream()));

PrintWriter out =
new PrintWriter (myServer.getOutputStream(), true);

Server side : create a specific socket, accept incoming connections:

ServerSocket listener = new ServerSocket (port);
...
Socket client = listener.accept(); ... client.close();

PPJ-76

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Worker paradigm
PPJ-77

A task is decomposed dynamically in a bag of subtasks .
A set of worker processes of the same kind

solve subtasks of the bag and may create new ones .

Speedup if the processes are executed
in parallel on different processors.

Applications : dynamically decomposable tasks, e.g.

• solving combinatorial problems with methods like
Branch & Bound, Divide & Conquer, Backtracking

• image processing

general process structure:

manager process
manages the subtasks to be solved and
combines the solutions of the subtasks

worker process
solves one subtask after another,
creates new subtasks, and
provides solutions of subtasks.

manager

subtasks

solutions

worker

worker

. . .

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Branch and Bound

Algorithmic method for the solution of combinatorial problems (e. g. traveling salesperson)

tree structured solution space is searched for a best solution

General scheme of operations:

• partial solution S is extended to S1, S2, ... (e. g. add an edge to a path)

• is a partial solution valid ? (e. g. is the added node reached the first time?)

• is S a complete solution? (e. g. are all nodes reached)

• MinCost (S) = C: each solution that can be created from S has at least cost C
(e. g. sum of the costs of the edges of S)

• Bound : costs of the best solution so far.

Data structures: a queue sorted according to MinCost; a bound variable

sequential algorithm:
iterate until the queue is empty:

remove the first element and extend it
check the thus created new elements
a new solution and a better bound may be found
update the queue

PPJ-78

©
 2

01
4

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

B&B example: Travelling sales person
PPJ-78a

A

AB AC AD
5 20 10

1

2 3 4

Connection graph

Solution space

order of node creation

path

cost so far

no choice

ABC ABE
15 8

5 6

ABEC ABED
13 11

7 8

ADC ADE

12 13

9 10

ABEDC
13

11

ADCB ADCE
22 17

12 13

ABEDCA
33

14

Solution

ABECD
15

15

ADEC ADEB
18 16

16 17

ABECDA
25

25
18

19 20
ABCD ABCE

17 20

ADEBC
26

21 X
ABCDE
20

22 X
ADCEB

20

23
ADECB

28

24 X

ADCEBA
25

25
25

ABCED
23

26

ACB ACD ACE
30 22 25

27 28 29 XX

30
ADCBE
25

X

ACDE
25

31 X

ABCEDA
33

32

A B

C

D E

5

20

10 2

3

5

10

3

©
 2

00
6

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Branch & Bound (central)

A central manager process holds the queue and the bound variable

Each worker process extends an element, checks it, computes its costs, and a new bound

Protocol : reqEl (getEl [getBound] (putEl | putBound)* reqEl)* terminate
for a single Worker

PPJ-79

reqEl

getEl

putEl

putBound

getBound

terminate

manager

queue

bound

workeri

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Parallel Branch & Bound (distributed)

Several manager processes cooperate - one for each worker process.

The work load is balanced between neighbours, e. g. organized in a ring

PPJ-80

...

interface
as in PPJ-79

...

manageri workeri

manageri+1 workeri+1

reqLoad

getLoad

newBound

Termination condition :

• all workers are inactive,

• no manager has another task

• all task channels are empty

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Termination in a ring

Task: Determine a global state of processes that communicate in a directed ring , and
inform all processes, e. g. „all processes are inactive“.

Idea: A token rotates through the ring and marks the processes (yellow)
that have reached the state in question (inactive).
At the end of the marked sequence the mark may be reset again.
When the token reaches the end of the marked sequence, the state holds globally

PPJ-81

receives the
token again

has no work and
receives the token

receives
work again

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Method calls for objects on remote machines (RMI)

Remote Method Invocation (RMI) : Call of a method for an object that is on a remote machine

In Java RMI is available via the library java.rmi.

Comparable techniques : CORBA with IDL, Microsoft DCOM with COM

Tasks :

• identify objects across machine borders (object management, naming service)

• interface for remote accesses and executable proxies for the remote objects (skeleton, stub)

• method call , parameter and result are transferred (object serialization)

PPJ-82

server
object

put (..) {...}

port
client

r.put(x, y);

©
 2

00
5

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

RMI in Java

remote interface: special requirements for interface methods

registry: system process for the machine and for a port;
establishes relations between names and object references

server skeleton: proxy of the server for remote accesses to server objects,
performs I/O transfer on the server side,

client stub: proxy of the server, performs I/O transfer on the client side

PPJ-83

server-
object

put (..) {...}

port
client

serv.put(x, y);

registry
name serv

skeleton stub

remote
interface

remote
interface

©
 2

00
5

be
i P

ro
f.

 D
r.

 U
w

e
K

as
te

ns

RMI development steps

Example: make a Hashtable available as a server object

1. Define a remote interface:
public interface RemoteMap extends java.rmi.Remote
{ public Object get (Object key) throws RemoteException; ...}

2. Develop an adapter class to adapt the server class to a remote interface:
public class RemoteMapAdapter extends UnicastRemoteObject

implements RemoteMap
{ public RemoteMapAdapter (Hashtable a) { adaptee = a; }

public Object get (Object key) throws RemoteException
{ return adaptee.get (key); }
...

}

3. Server main program creates the server object and enters it into the registry:
Hashtable adaptee = new Hashtable();
RemoteMapAdapter adapter = new RemoteMapAdapter (adaptee);
Naming.rebind (registeredObjectName, adapter);

4. Generate the skeleton and stub from the adapted server class;
copy the client stub on to the client machine:
rmic RemoteMapAdapter

PPJ-84

©
 2

01
1

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

RMI development steps (continued)

5. Client identifies the server object on a target machine and calls methods:
Registry remoteRegistry = LocateRegistry.getRegistry (hostName);
RemoteMap serv = (RemoteMap) remoteRegistry.lookup (remObjectName);
v = serv.get (key);

6. Start a registry on the server machine:
rmiregistry [port] &
Default Port is 1099

7. Start some servers on the server machine.

8. Start some clients on client machines.

PPJ-85

©
 2

00
3

be
i P

ro
f.

D
r.

 U
w

e
K

as
te

ns

Objects as parameters of RMI calls

Parameters and results of RMI calls are transferred via I/O streams.

That is straight-forward for values of basic types and strings .

For objects in general :
The values of their variables are transferred,
on the receiver side a new object is created from those values.

The class of such objects has to implement the interface Serializable :

import java.io.Serializable;

class SIPair implements java.io.Serializable
{ private String s;

private int i;

public SIPair (String a, int b) { s = a; i = b; }
public String toString () { return s + "-" + i; }

}

PPJ-86

