
SPECIAL ISSUE

Articles

ADVANCED COMPILER OPTIMIZATIONS
FOR SUPERCOMPUTERS

Compilers for vector or multiprocessor computers must have certain
optimization features to successfully generate parallel code.

DAVID A. PADUA and MICHAEL J. WOLFE

Supercomputers’ use parallelism to provide users
with increased computational power. Most super-
computers are programmed in some higher level
language, commonly Fortran; all supercomputer
vendors provide Fortran compilers that detect paral-
lelism and generate parallel code to take advantage
of the architecture of their machines’ [25, 46, 531.

This article discusses some of the common (and
not so common) features that compilers for vector or
multiprocessor computers must have in order to suc-
cessfully generate parallel code. The many examples
given throughout are related to the generic types of
machines to which they apply. Where appropriate,
we also relate these parallel compiler optimizations
to those used in standard compilers.

‘Some of the supercomputers available today are the FX Series from Alliant
Computer Corporation. the Cyber 205 from Control Data Corporation, the
Convax C-I from Conwx Computer Corporation. the Cray 2 and the Cray
X-MP 1151 from Cray Research. the Facom VP from Fujitsu [39], the S-810
Vector Processor from Hitachi 1401. the SX System from NEC Corporation. and
the SCS-40 from Scientific Computer Systems. Alliant’s FX and Convex’s C-l
are usually classified as minisupercomputers.

’ Besides the vendor-supplied compilers. there are a number of experimental
and third-party source-~o-so~~rce restructurers. Among them are the Univer-
sity of Illinois’s Parafrase 1321, KAl’s KAP [17. 181. Rice University’s PFC 1.51,
and Pacific Sierra’s VAST [I 11.

This work was supported in part by the National Science Foundation under
Grant US NSF DCR84.06916 and US NSF DCR84.10110. the U.S. Department
of Energy under Grant IJS DOE-DE-FG02.85ER25001, and the IBM Donation.

Cl 1986 ACM OOOI-0782/86/1200-1184 75a

Fortran is currently the programming language of
choice for supercomputers, largely because vendors
presently provide optimizing, vectorizing, and
concurrentizing3 compilers only for Fortran. In addi-
tion, Fortran has historically been the most fre-
quently used numerical programming language, and
much investment has been made in its programs.
The examples in the text are written in Fortran,
using some of the new features described in the lat-
est Fortran-8x proposal [i’], such as the end do
statement and array assignments. The literature dis-
tinguishes two types of concurrent loops: doall and
doacross [16, 431. The latter imposes a partial exe-
cution order across iterations in the sense that some
of the iterations are forced to wait for the execution
of some of the instructions from previous iterations.
Doall loops do not impose any partial ordering
across iterations, even though there may be critical
regions in the loop bodies.* Despite our use of
Fortran, none of the features or transformations ex-
plained here are peculiar to this language, and they
can be successfully applied to many others.

‘The term parallclize is often used to describe the translation of serial code for
parallel computers. We prefer the mow specific cor~currtwt over parallel. since
parallel may moan vector. concurrent. or lockstep multiprocessor computa-
tion. Also, Alliant Computer Corporation. the first commercial vendor to sup-
ply a compiler that automatically translates code for multiple processors. uses
the term cor~currer~f.

a The DOALL statement was originally defined in the Burrough’s FMP Fortran
113, 361.

December 1986 Volume 29 Number 12

Special Issue

We will discuss how data-dependence testing of
some form is required in any compiler that wishes to
detect parallelism in serial code, and explain the
different types of parallel code that can be gener-
ated. Vector code is appropriate for computers with
vector instructions sets, while concurrent constructs
are used in multiprocessor environments. Also cov-
ered are ways to improve the computation of the
data-dependence graph. A (very incomplete) catalog
of transformations and restructuring tricks that com-
pilers use to optimize code for parallel computers is
given, followed by a discussion of how these com-
pilers communicate with programmers.

DATA DEPENDENCE
Data-dependence testing [5, 8, 10, 521 is required for
any form of automatic parallelism detection. Data-
dependence relations are used to determine when
two operations, statements, or two iterations of a
loop can be executed in parallel. For instance, in the
code

S ,: A=B+C
s* : D=A+2.
S 3: E = A * 3.

statements S, and sz cannot be executed at the
same time since Sz uses the value of A that is com-
puted by s,. This is called true dependence or f7ow
dependence since the data value flows from S, to s2,
and is denoted S, 6 sz. s3 also depends on S,
(denoted s , 6 sJ; thus S, must be executed before
both sz and s3. The data-dependence relations are
often depicted in a data-dependence graph, with arcs
representing the relations, as follows:

Notice that Sz and s3 are not connected by data-
dependence arcs and so may be executed in parallel
if two processors are available.

Two other kinds of data dependence are impor-
tant. In the program segment

S ,: A=B+C
s* : B=D/2

S, uses the value of B before Sz assigns a new value
to B. Since S, is to use the “old” value of B, it must
be executed before s2; this is called antidependence,
as the relation is from the use to the assignment, and

is denoted S, 5 S2. The third kind of dependence
is shown in the program segment below:

s,: A=B+C
s2 : D=A+2
s3: A=E+F

Here s3 assigns a new value to A after S, has already
given a value to A. If S , is executed after S3, then A
will contain the wrong value after this program seg-
ment. Thus, S, must precede S3; this is called output
dependence and is denoted S, 6” S3.

The flow of control must also be taken into ac-
count when building data-dependence relations. For
instance, in the program segment

S,: A = B + C
if (X >= 0) then

sz : A = 0.
else

s3 : D=A
end if

the relations S, 6” sz and S, 6 s3 hold, but
s2 6 s3 does not hold even though S2 assigns a
value to A and S3 uses A, and S3 appears after Sz in
the program. Since sz and s3 are on different
branches of the same if statement, the value of A
used in s3 will never come from s2.

Since the actual execution flow of a program is
not known until run time, a data-dependence rela-
tion does not always imply data communication or
memory conflict. For instance, in this program seg-
ment

S,: A = B + C
C ,: if (X >= 0) then
S 2: A=A+2

end if
s3: D = A * 2.1

the data-dependence relations S, 6 S3 and Sz 6 S3
will both be computed by the compiler, even though
S3 will in fact take the value of A from only one of
S, or S2, depending on the value of X.

Many compilers also use the concept of depen-
dence from an if statement to the statements under
control of the if. This is called control dependence
and is denoted 6’. In the program segment above, for
example, the control-dependence relation C, 6’ Sz
holds. Control-dependence relations are often added
to the data-dependence graph in order to find which
statements in the program can be reordered, or
when looking for cycles in the graph.

Data Dependence in Loops
Inside loops we are interested in data-dependence
relations between statements and also dependence

December 1986 Volume 29 Number 12 Communications of the ACM 1185

./

Special Issue

relations between instances of statements. We distin-
guish between different insta:nces of execution of a
statement by superscripting the statement label with
the loop iterations. For instance, in the loop

do I = I,3

S 1: A(1) = B(1)
do J = 1,2

.sz : C(I,J) = A(I) + B(J)
end do

end do

statement S, is executed three times: s 1, s :, s :; and
Sz is executed six times: S:,‘, S:,‘, S:,‘, S$*‘, S:,‘,
s 2’ 2 (we put the outer loop iteration number first).
We can also draw the iterations as points with
Cartesian coordinates, as below:

cs.; ---- +sy-.--~sy-\

----------------- /
c b ST ---,s$, ‘-.--- ,c$> 2,\

/ /--------------/
/
\ * s: ---,s;, I--- +s;,2

This diagram ilbistrates the iteration space; the dot-
ted arrows show the order in which the instances of
the statements are executed.

To find data-dependence relations in loops, the
arrays and subscripts are examined. In the loop

do I = 2,N
s,: A(1) = B(1) + C(1)
sz: D(1) = A(1)

end do

the relation S, 6 sz holds, since, for any iteration i,
S;willassignA(i) andS;willuseA(i) onthe
same iteration of the loop. Since the dependence
stays in the same iteration of the loop, we say
s, 6= sz.

In the following similar loop

do I = 2,N
s,: A(1) = B(1) + C(1)
s2: D(1) = A(I-1)

end do

the relation S, 6 sz still holds, but for any iteration
i , S ; will use an element of A that was assigned
on the previous iteration of the loop by s ;-’ (except
S$, which uses an “old” value of A(1)). Since the
dependence flows from iteration i-l to iteration

i, we say that S, 6, Sz (the relation is S< because
i - 1 < i).

A third similar example is shown below:

do I = 2,N
S 1 : A(1) = B(1) + C(1)
S 2: D(1) = A(I+l)

end do

In this loop, for any iteration i, s : will use an ele-
ment of A that will be reassigned by s ;+’ . Since s2

should use an “old” value of A, the antidependence
relation Sz b S, holds. This relation flows from
iteration i to iteration i+l , so we say Sz S, S,
(since i < i + 7).

The = or < used as the subscript of 6 is called the
data-dependence direction, since it gives the direction
of the dependence relation in the iteration space. In
nested loops, there is a direction for each loop; these
comprise a data-dependence direction vector. For in-
stance, in the loop

do I = l,N
do J = 2,N

S 1: A(I,J) = A(I,J-1) + B(I,J)
sz: C(I,J) = A(I,J) + D(I+l,J)
s3: D(I,J) = 0.1

end do
end do

the following dependence relations hold:

s1 6=,< s1
s, d= = s, > I
sz F<,= s3

Since most array subscripts are simple, simple
tests are usually sufficient. Some compilers (e.g.,
Cray Fortran (CFT) and Control Data’s Fortran 200
compilers) use restricted tests that allow only certain
array subscript expressions, such as A (I) or
A (I * c+k) (where c and k are constants). Depen-
dence is assumed for any array reference that does
not conform to the restrictions. These tests work
well for new codes that are written with a particular
computer in mind, since programmers will know
what loops they want executed in parallel and will
help the compiler by keeping their loops simple.

Sophisticated methods have been developed to
handle more general cases (see [5, 8, 10, 521). For
instance, in order for data flow-dependence to be
caused by the two array references to A here

do I = L,U
s, : A(c*I+j) = . . .
52 : . . . = A(d*I+k)

end do

1166 Conmunications of the ACM December 1986 Volume 29 Number 12

Special Issue

(where c, d, j, and k are integer constants), the
greatest common divisor of c and d (GCD (c,d))

must divide (k-j). For example, no dependence
would exist in the following loop

do I = L,U
s, : A(2*1) = . . .
sz : . . . = A(2*1+1)

end do

since the GCD (2,2)=2, which does not divide
l-0=1.

More importantly, there must exist two values of
the loop index variable I, say x and y, such that

LCxlylU
c*x+j = d*y+k

In the sample loop below

do I = 1,lO
s,: A(19*1+3) = . . .
sz: . . . = A(2*1+21)

end do

the only two values that satisfy this dependence
equation are x = 2 and y = 10 :

19*2+3 = 41 = 2*10+21

Solving this Diophantine equation is the subject of
several of the references cited above, which also
generalize this to nested loops where several loop
indexes appear in a single subscript.

CODE GENERATION
When a good data-dependence graph has been built
for a loop nest, the compiler can generate parallel
code. Since many supercomputers have vector
instruction sets, vectorization is important. Most
vector computers can compute certain reduction
operations, such as the sum of all the elements of a
vector, using vector instructions. At least one super-
computer also has hardware to assist in the solution
of first order linear recurrences.5

Newer supercomputers achieve higher speeds by
using multiple processors. For these machines, gen-
eration of concurrent code will utilize all processors.
Concurrent loops and concurrent blocks of code are
two types of parallel code that can be generated.

Loop Vectorization
Loops are vectorized by examining the data-
dependence graphs for innermost loops. A simple
graph algorithm to find cycles in the data-
dependence graph identifies any trouble spots in

‘A first order linear recurrence is defined by the equations x, = ci + a, XX,-,
i = 2. 3.. II and x1 = 0.

vectorization. If there are no cycles in the graph,
then the whole loop can be vectorized. For example,
the following loop

do I = l,N

S 1: A(1) = B(1)
S 2: C(1) = A(1) + B(1)
s3 : E(1) = C(I+l)

end do

has the following data-dependence graph:

Sl

,i,

SZ

+ Flow dependence

~

S3

$ -* Antidependence

Because the data-dependence graph has no cycles, it
can be completely vectorized, although some state-
ment reordering will be necessary. Since S3 g Sz ,
s3 must precede sz in the vectorized loop:

S,: A(1:N) = B(l:N)
S 3: E(l:N) = C(2:N+l)
S 2: C(l:N) = A(1:N) + B(1:N)

The following loop contains a data-dependence
cycle:

do I = 2,N
S 1: A(1) = B(1)
sz : C(1) = A(1) + B(I-1)
s,: E(1) = C(I+l)
54 : B(1) = C(1) + 2.

end do

The following is the data-dependence graph for this
loop:

Sl

Statements sz and s4 comprise a cycle in the data-
dependence graph; when the dependence graph

December 1986 Volume 29 Number 12 Communications of the ACM 1187

Special zssuc

contains a cycle, the strongly connected components
(or maximal cycles) must be found. All the statements
in a data-dependence cycle must be executed in a
serial loop unless the cycle can be broken. However,
other statements may still be vectorized. Thus, the
previous loop may be partially vectorized as follows:

s,: A(2:N) = B(2:N)
S 3: E(2:N) = C(3:N+l)

do I = 2,N
sz: C(1) = A(1) + B(I-1)
S 4: B(1) = C(1) + 2.

end do

A sufficient (but not necessary) condition for
vectorization of a loop is that no upward data-
dependence reXations (Si 6 Sj, and Sj lexically pre-
cedes SJ appear in the loop. This will guarantee
legal vectorization, but will miss loops where simple
statement reordering would allow vectorization (as
in the first example above).

Certain reduction operations appear frequently
in programs and are recognized by vectorizing
compilers. Prorninent among these is the SUM
of a vector:

do I = 1,N
S 1: A(1) = B(1) + C(1)
S 2: ASUM = ASUM + A(1)

end do

Vector code for this loop would appear as follows:

S ,: A(l:N) := B(l:N) + C(l:N)

Sz: ASUM = ASUM + SUM(A(l:N))

Here, the SUM function returns the sum of its argu-
ment. A special case of a SUM is a dot product; this is
important because many supercomputers have a dis-
tinct adder and multiplier that can perform a dot
product (a SUM of a multiplication) in the same time
as a SUM alone, thus performing the multiplication
with almost no time penalty.

Care must be taken by the compiler and the pro-
grammer to ensure that the correct answer will al-
ways result. Most methods to produce a sum using
vector instructions involve accumulating partial
sums, then adding the partial sums together. Since
this will add the arguments in a different order than
the original loop, round-off errors may accumulate
differently, and some programs may produce sub-
stantially different answers. Some compilers have a
switch that will disable generation of reductions in
order to guarantee the same answers from the vecto-
rized code as from the serial code.

Other common reductions are the PRODUCT of a
vector or maxirnum or minimum of a vector. Simple
pattern recognition can be used to find these opera-
tions (as well as SUM) in loops. More complicated

patterns, such as a loop that finds the maximum of a
vector and saves the index of the maximum, are also
frequently found:

IMAX = 1

AMAX = A(1)
do I = 2,N

if (A(1) > AMAX) then
AMAX = A(1)
IMAX = I

end if
end do

Recognizing and generating vector code for such
multistatement patterns enhance the overall power
of a vectorizer.

At least one supercomputer has been designed
with an instruction to solve first order linear recur-
rences.’ These recurrences can be recognized by
pattern matching:

do J = 2,N
A(J) = A(J--1) * B(J) + C(J)

end do

Fast algorithms for solving recurrences on parallel
computers have been devised that may be useful for
some systems, although these suffer from the same
round-off error accumulation problem mentioned
earlier. Many computer systems offer a library of
procedures to compute certain common forms of re-
currences;7 some compilers recognize these recur-
rences and translate them into calls to the appropri-
ate library procedure.

Loop Concurrentization
One way to use multiple processors in a computer is
to partition the set of iterations of a loop and assign a
different subset to each processor [16, 19, 34, 38, 42,

431. Two important factors that determine the qual-
ity of the concurrent code are the balance of proces-
sor load, and the amount of processor idle time due
to synchronization. Concurrentization, therefore,
should aim at an even distribution of the iterations
among processors and should try to organize the
code so as to avoid synchronization or, at least, to
minimize waiting.

Checking for independent iterations is done by ex-
amining the data-dependence directions. If all the
data-dependence relations in a loop have an = direc-
tion for that loop, then the iterations are indepen-
dent. The only time that communication between

‘The Burroughs Scientific Processor (BSP] [30] was designed with a recur-
rence instruction. but the project was canceled before the first machine was
delivered. Among current supercomputers. the Hitachi S-610 has a recurrence
instruction.

‘In particular. the STACKLIB library for the Control Data 6600 [46]. 7600.
Cyber 70. Cyber 170. and Cyber 205 computers.

1188 Comnrunicafions of the ACM December 1986 Volume 29 Number 12

Special Issue

processors is necessary is when a data-dependence s, i!L sz
relation exists in the loop with a <direction for that s, s< s3
loop. For instance, the loop s* CL s3

do I = 1,N
do J = 2,N

s, : A(I,J) = B(I,J) + C(I,J)
s* : C(I,J) = D(I,J) / 2
s3: E(I,J) = A(I,J-I)**2

+ E(I,J-1)
end do

end do

has the following data dependences:

s1 6=,< s3
s, z,= sz
s3 6=,< 53

Since all the data-dependence directions for the I
loop are =, each iteration of the I loop can be exe-
cuted in parallel. If N processors are available, each
processor can execute one iteration of the loop. If
fewer processors are available, the iterations can be
folded onto the processors in one of several ways.
The compiler can preschedule the iterations of the
loop onto the P processors either in contiguous
blocks

processor 1 executes iterations 1 , 2, . . . , rN/Pi

processor 2 executes iterations rN/Pl+l , . . . 2rN/Pi

or by assigning every Pth iteration to the same
processor:

Since there is a < data-dependence direction for this
loop, the iterations cannot be executed indepen-
dently. If the different iterations are to be executed
in parallel, the processor executing iteration i must
not fetch the value for A (i-l) in statement S ; be-
fore the processor executing iteration i- 1 has
stored the value of A (i- 1) in statement S ;-‘. The
code inside the loop with the synchronization added
would appear as follows:

S,: A(1) = B(1) + C(I)
signal (I)

S2: C(1) = D(1) * 2.
if (I > 2) wait (I-l)

s3 : E(1) = C(1) + A(I--1)

The compiler can sometimes reorder statements to
reduce the effect of the required synchronizations.
Weak data-dependence tests may add some synchro-
nizations that are not really necessary, so good de-
pendence testing is critical for good performance.

Recognition of simple reductions applies to con-
current loops as well as vector loops. One method to
generate parallel code for the loop

do I = l,N
S 1 : A(1) = B(1) + C(1)
sz: D(1) = A(1) * 2.
sj : ASUM = ASUM + A(1)

end do

processor 1 executes iterations 1 , P+l , 2P+l , . . . is to add synchronization (as above) around state-

processor 2 executes iterations 2, P+2, 2P+2, . . . ment s3, so that each processor p (of the P available
processors) would execute the following loop:

Alternatively, the processors can be self-scheduled
[27, 471, meaning that each processor at the end of
every iteration enters a critical section of code to
determine what iteration of the loop it should exe-
cute next. Self-scheduling works well when the
workload for each iteration is relatively large, but
may vary between different iterations, perhaps due
to conditional code in the loop.

Sometimes the iterations of a loop are not inde-
pendent:

do I = 2,N
S 1 : A(1) = B(1) + C(1)
sz: C(1) = D(1) * 2.
s3: E(1) = C(1) + A(I-1)

end do

The data-dependence relations for this loop are the
following:

do I = p,N,P

S 1: A(1) = B(1) + C(1)
sz: D(1) = A(1) * 2.

if(I > 1) wait (I-l)
s3 : ASUM = ASUM + A(1)

signal (I)
end do

This method is simple to implement and will always
result in the same answer as the original scalar code
(which, again, can be an important factor due to
round-off error accumulations). A faster method is to
accumulate partial sums on each processor

ASUMX(p) = 0
do I = p,N,P

s,: A(1) = B(1) + C(1)
S 2: D(1) = A(1) * 2.
s,: ASUMX(p) = ASUMX(p) + A(1)

end do

December 1986 Volume 29 Number 12 Communications of the ACM 1189

Special Issue

and then add the partial sums into the summation
variable ASUM (at the end of the loop. This produces
completely parallel code without synchronization,
but may accumulate different round-off errors.

High-Level Spreading
Another approach to utilizing multiple processors is
to spread independent operations over several pro-
cessors. A fine-grain parallelism model would spread
the computatio:n tree of an expression evaluation
over several processors. For instance, the computa-
tion tree for the expression

A + (B"2 - Ck1.5) - (D - 2*E)

is as follows:

Level 1

/‘\

Level 2
/

+\
I\

Level 3 A

A D /*\
Level 4 3: 2 E

/ \
\ ‘\\

Level 5 B 2 c 1.5

In the computation tree at levels 2, 3, and 4, there
are two arithmetic operations that could be per-
formed simultaneously. With two processors, this
expression could be computed in four times steps
(assuming + and * take the same time and assuming
no time for variable fetching or processor communi-
cation), instead of the seven time steps necessary for
a single processor.

The problem with this model is that the assump-
tions are invalid for current machines; variable
fetching does ta.ke time, and if several processors
share a common memory, they can interfere with
each other. Communication between processors also
takes time; thus, it is better to try to spread blocks of
code that represent a relatively large workload. As
with concurrent loops, it is best if the blocks of code
assigned to different processors are completely inde-
pendent, so that no communication costs are in-
curred. If the workload is spread unevenly over the
processors, then some processors may finish early
and be left idle while other processors are still busy.

Adjacent blocks of code, such as adjacent inde-
pendent recurrence loops or procedure calls, are
candidates for high-level spreading [SO]. The data-
dependence relations between these high-level ob-

jects are examined, and if the blocks of code are
independent, then they can be spread over several
processors. If there are data-dependence relations
between the blocks of code, then either synchroniza-
tion must be added (as in loop concurrentization) to
perform spreading, or the code must be executed
serially.

The potential for speedup with spreading is much
lower than for loop concurrentization. Loop concur-
rentization may find N independent blocks of code,
where N is the loop bound. Spreading, in practice,
will usually find only 2-3 independent blocks of
code suitable for parallel execution.

Trade-offs between Vectorization
and Concurrentization
Some recent computer designs (e.g., the Cray X-MP,
Alliant FX/8, and ETA”) have multiple processors
with vector instructions. The techniques of vectori-
zation and concurrentization must be used together
to take full advantage of these computers. When
only one loop exhibits any parallelism, the compiler
must decide whether to generate vector code, con-
current code, or whether to split the index set into
segments, all of which can be executed concurrently
and in vector mode. When the loop contains many
if statements that would produce sparse vector
operations, concurrent execution may be more
efficient.

When several nested loops exhibit parallelism, the
compiler must choose which loop to execute in vec-
tor mode and which in concurrent mode. Several
factors should be considered. For example, since the
vector speed of some machines depends on the stride
of memory accesses, the compiler may choose to exe-
cute the loop that generates stride-l’ memory opera-
tions in vector mode and some other loop in con-
current mode. However, since a <data-dependence
direction implies that a synchronization would be
required for concurrent execution, the compiler may
attempt to execute a loop with a < direction in vec-
tor mode, and to choose a loop with all = directions
for concurrent execution. This trade-off is illustrated
in the sample loop below:

do J = l,N

do I = 1,N
s, : A(I,J+l) = B(I,J) + C(I,J)
sz : D(I,J) = A(I,J) * 2.

end do
end do

This loop can be compiled with the I loop in vector
mode, which will generate stride-l memory opera-
tions (assuming Fortran column-major storage

1190 Communicafiorrs of the ACM December 1986 Volume 29 Number 12

.

Special Issue

order), and with the J loop in concurrent mode,
as follows:

doacross J = 1 ,N
s,: A(l:N,J+l) = B(l:N,J)

+ C(l:N,J)

refers to the same array addresses as the following
loop:

do I=l,N
X(N-I+l) = Y(1) + 2(2*1-l)

end do
signal (J)
if (J > 1) wait (J-l)

sz: D(l:N,J) = A(l:N,J) * 2.
end doacross

This may produce the best vector execution speed,
but the data-dependence relation S, 6, Sz requires
synchronization in the concurrent loop. An alternate
method to compile the loop would perform the J
loop in vector mode:

doall I = l,N

s,: A(I,2:N+l) = B(I,l:N)
+ C(I,l:N)

.sz : D(I,l:N) = A(I,l:N) * 2.
end doall

The expression assigned to I 2 is recognized as a
function of the loop index variable, so 12 is easily
recognized as an induction variable. The assignment
to INC is a self-decrement, which qualifies INC as
an induction variable. If the last values of 12 and
INC are not used later in the program, the two loops
above may be used interchangeably. After vectoriza-
tion, both loops become

X(N:l:-1) = Y(l:N) + 2(1:2*N-1:2)

Wraparound Variable Recognition
Sometimes a variable may look like an induction
variable, but does not quite qualify. The assignment
to J in the loop

Although this loop would have better concurrent ex- J=N
ecution speed, it would perhaps be at the expense of
slower vector execution. Balancing the different

do I=l,N

methods of compiling the loop to get the best per-
B(1) = (A(J) + A(1)) / 2.
J=I

formance is a tough job for the compiler. end do

IMPROVING POTENTIAL PARALLELISM
The previous sections should clarify the importance
of a good data-dependence testing procedure. If
unnecessary relations are added to the data-
dependence graph, then the potential for parallelism
discovery can be reduced dramatically. Some
methods for computing a more accurate data-
dependence graph are given here.

Induction Variable Recognition
Variables in loops whose successive values form an
arithmetic progression are called induction variables;
the most obvious example of an induction variable is
the index variable of a loop. Induction variables are
often used in array subscript expressions. Tradi-
tional optimization techniques are aimed at finding
induction variables to remove them from the loop
and also to optimize the array address calculation
[Z]. For data-dependence tests, the array subscripts
should be known in terms of the loop index vari-
ables; therefore, discovery of induction variables is
important. Most compilers will recognize that the
loop

INC = N
do I=l,N

12 = 2x1-1
X(INC) = Y(1) + Z(I2)
INC = INC - 1

end do

appears to qualify J as an induction variable, but J
is used before it is assigned. In fact, the programmer
used a trick to make the array A look like a cylinder.
The loop takes the average of two adjacent elements
of the array A; in the first iteration, the neighbor of
A (1) is defined to be A (N)-the J variable accom-
plishes this trick. J is called a wraparound variable,
since the values assigned to it are not used until the
next iteration of the loop.

By peeling off one iteration of the loop, J can be
treated as a normal induction variable:

if (N >= 1) then
B(1) = (A(J) + A(1)) / 2.
do 1=2,N

B(1) = (A(I-1) + A(1)) / 2.
end do

end if

The if is necessary to test the zero-trip condition of
the loop. The loop may be vectorized to become

if (N >= 1) then
B(1) = (A(J) + A(1)) / 2.
B(2:N) = (A(l:N-1) + A(2:N)) / 2.

end if

Symbolic Data-Dependence Testing
As mentioned in the data-dependence section, the
simplest data-dependence subscript tests will be suf-
ficient for a large number of cases, but are too lim-

December 1986 Volume 29 Number 12 Communications of the ACM 1191

Special Issue

ited for a general-purpose powerful compiler. Even
some of the more sophisticated tests have severe re-
strictions, such as requiring -that the loop bounds be
compile-time constants. To handle a large majority
of cases, a compiler must be able to compute precise
data-dependence relations for very general array ref-
erences. For instance, in the following loop

do I = LOW,IGH
S,: A(1) = B(1) + C(1)
S 2: D(1) = A(I--1)

end do

the data-dependence relation S, & sZ can be com-
puted using the simplest tests. However, in the
similar loop

do I = :LOW,IGH,INC
s, : A(1) = B(1) + C(1)
s,: D(1) = A(I-INC)

end do

the same relation S, SC sz holds, but is more diffi-
cult to detect, since the values of LOW, IGH, and
INC are all unknown to the compiler, and even the
sign of INC is unknown (a negative increment would
make the loop go backwards). The following is an-
other case in which symbolic data dependence (so
called because the subscript expression cannot be
decomposed into compile-time constants) is needed:

do I = l,N
S,: A(LOW+I-1) = B(1)
S 2: B(I+N) = A(LOW+I)

end do

Here, the two references to the array A can be com-
pared by canceling out the loop-invariant value LOW.
This is then the same as comparing A(I-l) to
A (I), which can be handled by simpler tests. The
two B array references cause no data dependence,
since the section of the array referenced by B (I) is
B (1 : N), which does not intersect with the section
of the array referenced by B (I+N) , namely
B(N+l:N+N).

Global Forward Substitution
Global jonuard substitution is a transformation that
substitutes the right-hand side of an assignment
statement for occurrences of the left-hand-side vari-
able, which is especially useful in conjunction with
symbolic data dependence. In programs, temporary
variables are frequently used to hold commonly
used subexpressions or offsets; these variables
appear later in i.he program in array subscripts.
Without some kind of global knowledge, the data-
dependence tests must assume that the set of sub-

script values might intersect. For example, the
program

NPl = N+l
NP2 = N+2

do I = l,N
S 1 : B(1) = A(NP1) + C(1)
sz : A(1) = A(1) - 1.

do J = 2,N
s3: D(J,NPl)

= D(J-l,NP2)*C(J) + 1.

end do
end do

defines two variables, NP 1 and NP2 in terms of N.
A loop, later in the program, uses NP 1 and NP2 in
array subscripts. If the compiler does not keep any
information about NP 1, then it must assume that the
assignment of A (I) might reassign A (NP 1) , and
thus there is dependence between S, and s2. How-
ever, NP 1 was defined to be N+l , and the assign-
ment to A (I) will not ever reach A (N+ 1) , so this is
a false dependence. Similarly, if the compiler does
not keep information about NP 1 and NP2, it must
assume that S, forms a recurrence. In fact, since
NP 1 can not equal NP 2, the two references to the D
array in s3 are independent, and the J loop can be
vectorized or concurrentized. Many compilers per-
form constant propagation [26, 45, 511, which is a
special case of global forward substitution.

Semantic Analysis
Semantic analysis of the program can also help re-
move data-dependence relations. For instance, in the
loop

do I = LOW,IGH
S 1: A(1) = B(1) + A(I+M)

end do

S , can be vectorized if M I 0, but not if M < 0. By
looking at the surrounding code, the compiler might
find an if statement:

if (M > 0) then
do I = LOW,IGH

S 1 : A(1) = B(1) + A(I+M)
end do

end if

Taking the if statement into account, this loop will
not be executed unless M > 0; therefore, it can be
vectorized. Note that since the iterations are not in-
dependent, concurrent code for this loop may still
not be appropriate.

1192 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

Sometimes, even if the if statement is not pre-
sent, the program can be modified to achieve a re-
sult similar to the previous transformation. The orig-
inal loop could be transformed into the following:

if (M>=O) then
do I = LOW,IGH

A(1) = B(1) + A(I+M)
end do

else
do I = LOW,IGH

A(1) = B(1) + A(I+M)
end do

end if

The then part of the if statement can now be
vectorized. This transformation is called two-version
loops for obvious reasons.

An alternative to semantic analysis is for the com-
piler to request information from the user. If the
user inputs M 1 0 as an assertion that is true imme-
diately before beginning of execution of the original
loop, then the compiler can proceed to vectorize the
loop. (Assertions are discussed in greater detail in
the section on interaction with the programmer,
p. 1198.)

Semantic analysis can also be used to generate
vector code for the following loop:

do I = LOW,IGH
S 1: A(1) = A(M)

end do

Since the relative values of LOW, IGH, and M are not
known, the data dependence S, 6 S , relation must
be assumed. This loop can, however, be executed
with a vector instruction. The value A(M) is loop
invariant, even if M falls between LOW and IGH. The
value A(M) will at worst be copied to itself; it will
not change. The vector code for this statement will
give the same results as the serial loop, but the en-
tire statement must be examined to prove this.

Interprocedural Dependence Analysis
When a procedure or function call appears in a loop,
most compilers will assume that the loop must be
executed serially. Analysis of the effects of the pro-
cedure or function call, including which parameters
are changed and what global variables are used or
changed, can allow dependence testing to decide
whether or not the procedure call prevents parallel
code from being generated. Studying other informa-
tion about the parameters, such as values of con-
stants, across procedure call boundaries can help the
compiler optimize the code [9, 12, 14, 491.

An alternative method for handling procedure

calls is to expand the procedure in-line (also called
procedure integration [35]. This makes possible the
application of some transformations that simultane-
ously manipulate code in the calling and in the
called routines.’ Also, dependence analysis for the
subroutine body is more exact, since only the effects
of the one call must be taken into account, and the
overhead of the subroutine call is eliminated. In-line
expansion is useful even for serial computers.”
However, in-line expansion should be done with
care to avoid an undue increase in the time required
for compilation.

Removal of Output and Antidependences
Output dependences and antidependences are, in
some sense, false dependences. They arise not be-
cause data are being passed from one statement to
another, but because the same memory location is
used in more than one place. Often, these false de-
pendences can be removed by changing variable
names or copying data.

Variable Renaming. Renaming introduces new vari-
able names to replace some of the occurrences of the
old variables throughout the program.

In the following program segment

s, : A=B+C
sz: D=A+l
S ,:A=D+E
s,: F=A-1

variable A is assigned twice. This produces the out-
put dependence S, 6“ S3 and the antidependence
S2 3 S3. Both of these dependences disappear if a
new variable replaces A in S, and S,:

S ,: A2 = B + C
S 2: D = A2 + 1

S ,:A=D+E
S,: F = A - 1

Renaming arrays is a difficult problem in general.
Current compilers rename arrays only in very lim-
ited cases, if at all.

Node Splitting. Some loops contain data-dependence
cycles that can be easily eliminated by copying data.
The following loop

do I = 1,N
s, : A(1) = B(1) + C(1)
S 2: D(1) = (A(1) + A(I+l)) / 2.

end do
‘For example. a loop surrounding the subroutine invocation and a loop in the
body of the routine could be interchanged (see the section on Loop Inter-
changing].
“‘Examples of compilers that do in-line substitution are the Experimental
Compiling System (41. Parafrase 1241. and the Perkin-Elmer Fortran Compiler.

December 1986 Volume 29 Number 12 Communications of the ACM 1193

Special Issue

has the following data-dependence graph:

5 k

S2

The data dependence cycle can be broken by adding
a temporary array:

do I = l,N

S 1: ATEMP(1) = B(1) + C(1)
S 2: A(I+l) = ATEMP(1) + 2*D(I)
s;: A(1) = ATEMP(1)

end do

This appears to be a data-dependence cycle. How- The data-dependence graph for the modified loop is
ever, one of the arcs in the cycle corresponds to an
antidependence: if this arc were removed, the cycle
would be broken. The antidependence relation can S1

be removed from the cycle by inserting a new as-
‘,

signment to a compiler temporary array as follows: + ,‘:,
sz

do I = l,N /

.s* : ATEMI?(I) = A(I+l)) i

S 1: A(1) = B(1) + C(1) i 4 .)ii

sz: D(1) = (A(1) + ATEMP(1)) / 2. S:

end do

The modified loop has the following dath-
dependence graph:

S:
,/ ‘i

/ J

‘4 ;i
S2

which has no cycles, and can now be vectorized:

S ,: ATEMP (1:N) = B(1:N) + C(l:N)
Sz: A(2:N+l) = ATEMP(l:N) + 2*D(l:N)
s;: A(1:N) = ATEMP(1:N)

In both of these cases the added cost is a copy
either to or from a compiler temporary array. For
machines with vector registers, however, the tempo-
rary array will be assigned to a vector register. The
“extra” copy is just a vector register load or store
that needs to be done anyway; proper placement of
the load or store will allow vectorization of these

The data-dependence cycle h.as been eliminated by
loops without additional statements.

“splitting” the sz node in the data-dependence graph
into two parts; the new loop can now be vectorized:

OPTIMIZATIONS FOR VECTOR
OR CONCURRENT COMPUTERS

sz : ATEMP(l:N) = A(2:N+l) Many of the optimizations in this section were de-
s, : A(l:N) == B(l:N) + C(l:N) signed with vector or concurrent computers in mind.
Sz: D(l:N) q = (A(l:N) + ATEMP(l:N)) / 2. These optimizations are used to exploit more paral-

A similar technique can be used to remove output
lelism or to use parallelism more efficiently on the

dependences in data-dependence cycles. The loop
target computer.

Due to space limitations, the list of methods we
do I = l,N discuss is incomplete. Among the absentees are the

s, : A(1) = B(1) + C(1) methods that deal with while loops and with recur-
sz : A(I+l) = A(1) + 2*D(I) sion. Only recently in the context of developing opti-

end do mizing compiler methods for Lisp has recursion

has the following data-dependence graph:
been carefully considered [22, 231. While loops, on
the other hand, are hard to manipulate, and the
known transformation techniques are successful

S1 only in limited cases.
4’ ‘\, -----.+ Flow dependence

Scalar Expansion

--++ Output dependence Vectorizing compilers will promote (or expand)
scalars that are assigned in loops into temporary

1194 Communications of the ACM December 1986 Volume 29 Number 12

Special Issue

arrays. This is clearly necessary in order to generate do J=l,N
vector code. For instance, the loop do 1=2,N

do I=l,N
S,: X = A(1) + B(1)
S 2: C(1) = x ** 2

end do

A(I,J) = A(I--1,J) + B(1) P.1)
end do

end do

is equivalent to the following loop:

can be vectorized by first expanding x into a tempo- do 1=2,N
rary array, XTEMP do J=l,N

allocate (XTEMP(l:N))
do I=l,N

s,: XTEMP(1) = A(1) + B(1)
s2: C(1) = XTEMP(1) ** 2

end do

A(I,J) = A(I-1,J) + B(1)
end do

end do

X = XTEMP(N)
free (XTEMP)

Loop interchanging can translate either of the pre-
vious two loops to the other. Interchanging loops is
not always possible. The folIowing loop is an exam-
ple of a loop that cannot be interchanged:

w

and then generating vector code:

allocate (XTEMP (1:N))

s,: XTEMP (1:N) = A(l:N) + B(l:N)
S 2: C(l:N) = XTEMP(l:N) ** 2

do K=2,N
do L=l,N-5

A(K,L) = A(K-l,L+5) + B(K)
end do

end do
X = XTEMP(N)
free (XTEMP)

The explicit allocate and free are not neces-
sary on many computers, such as those with vector
registers, since the temporary array will exist only in
the registers.

When the target machine is a multiprocessor,
there is another alternative. Multiprocessor lan-
guages (such as Cedar Fortran” and Blaze [37]) al-
low the declaration of iteration-local variables. Thus,
the loop

doall I=l,N
real X
X = A(1) + B(1)
C(1) = x ** 2

end doall

is another valid transformation of the previous loop,
as long as X is not used outside the loop in the
original program. The real X declaration in the
doall loop means that there will be a separate copy
of X for each iteration of the loop. Declaring a scalar
variable as iteration local has the same effect as
transforming the scalar into an array.

Loop Interchanging
In a multiply-nested loop, the order of the loops may
often be interchanged without affecting the outcome
[6, 521. For instance, the loop

” Cedar Fortran is the Fortran dialect being designed for the Cedar multi-
processor project at the University of Illinois (21. 311.

Figure 1 (p. 1197) illustrates how data-dependence
graphs are used to determine when loop interchang-
ing is valid.

Loop interchanging may be used to aid in loop
vectorization. For instance, LI (above) computes a
linear recurrence in its inner loop; interchanging it
to create L2 allows vectorization of the J index:

do 1=2,N
A(I,l:N) = A(I-1,l:N) + B(1)

end do

Loop interchanging may also be used to put a con-
current loop on the outside, leading to a better pro-
gram after loop concurrentization. Thus, loop L2
could be interchanged into Ll, which would then be
concurrentized to become the following:

doall J=l,N
do 1=2,N

A(I,J) = A(I--1,J) + B(1)
end do

end doall

Fission by Name
Techniques have been developed to handle virtual
memory systems, cache memories, and register allo-
cation. The fission-by-name transformation tries to
break a single DO loop into several adjacent loops.
Two statements in the original loop will be in the
same resulting loop if there is at least one variable or
array referenced by both statements. Fission by
name (originally called “distribution of name parti-

December 1986 Volume 29 Number 12 Communications of the ACM 1195

Special Issue

tions” [l]) is used to enhance memory hierarchy
performance.

Loop Fusion
Loop fusion is a conventional compiler optimization
[3, 351 that transforms two adjacent loops into a sin-
gle loop. The use of data-dependence tests allows
fusion of more loops than is possible with standard
techniques. For example, the loops

do I = 2,N
s, : A(1) = B(1) + C(1)

end do
do I = 2,N

sz: D(1) = A(I-1)
end do

would not be fused by conventional compilers that
do not study the array subscripts. However, the loop
fusion is legal since the data-dependence relation
S, 6 sz would not be violated:

do I = 2,N
S 1 : A(1) = B(1) + C(1)
sz : D(1) := A(I-1)

end do

A slightly modified example shows when loop fusion
is not legal:

do I = 2,N
s,: A(1) := B(1) + C(1)

end do
do I = 2,N

s* : D(1) := A(I+l)
end do

In the original two loops, the data-dependence rela-
tion S, 6 s2 holds; the fused loop below, however,
has the relation sz 7 S,:

do I = 2,N

S 1: A(1) q = B(1) + C(1)
S 2: D(1) == A(I+l)

end do

Loop fusion is used in conventional compilers to
reduce the overhead of loops. Likewise, fusion helps
to reduce start-up costs for doall loops. It may also
increase overlapping if two doall loops require
synchronization between iterations.

Since loop fusion and loop fission are dual trans-
formations, any compiler that uses both of them
should do so carefully. Loop fusion should not be
used to fuse the loops just created by fission. Loop
fusion can be used to combine separate loops, if they
all refer to the same set of variables, with the same

goal as fission by name. For instance, by fusing sev-
eral loops that refer only to the arrays (A, B , D 1, the
compiler would have a larger loop with the benefits
of loop fusion, but still have the improved memory
hierarchy performance that comes from only refer-
ring to a small set of arrays in the loop.

Strip Mining
Strip mining [35] is used for memory management; it
transforms a singly nested loop into a doubly nested
one. The outer loop steps through the index set in
blocks of some size, and the inner loop steps through
each block. As an example, consider the following
loop:

do I=l,N
A(1) = B(1) + 1
D(1) = B(1) - 1

end do

After strip mining, this becomes the following:

do J=l,N,32
do I=J,MIN(J+31,N)

A(1) = B(1) + 1
D(1) = B(1) - 1

end do
end do

Thus, the loop is excavated in chunks, just as a strip
mine is excavated in shovelfuls.

The block size of the outer block loop (32 in this
example) is determined by some characteristic of the
target machine, such as the vector register length or
the cache memory size (see Figure 2, p. 1198, for an
example of strip mining and fission by name). For
vector machines, the inner strip loop will be vecto-
rized; for parallel computers, the outer block loop
can sometimes be concurrentized. Figure 3 (p. 1199)
shows how strip mining and loop interchanging can
be combined to optimize performance.

Loop Collapsing
Loop collapsing [44, 521 transforms two nested loops
into a single loop, which is used to increase the
effective vector length for vector machines. There-
fore,

real A(5,5),B(5,5)
do I = 1,s

do J = 1,5

A(I,J) = B(I,J) + 2.
end do

end do

becomes as follows:

1196 Coninlunicationsofthe ACM December 1986 Volume 29 Number 12

Special Issue

W

do 1=1,3

do J=1,3

S: A(I,J) = A(I-l,J+l)
end do

end do

(4

(4

do 1=1,3

do J=1,3

T: A(I,J) = A(I-l,J-1)
end do

end do

(4

(f) (9)

The compiler uses data dependences to determine when
loop interchanging is valid. For example, the loops in (a) may
not be interchanged. To see why, consider its iteration space
in (b). The arrows in (b) show the data-dependence relations
flowing across the iteration space. The instances of state-
ment S are executed by (a) in the order shown by the dotted
arrows in (c). If the loops in (a) were interchanged, the new

(‘4

(h)

order of execution would be as shown in (d). In this loop
ordering, s 2 3 ’ would be executed before S ’ 3 ‘, even though
the S2’ 1 needs a value computed by s’s 2; thus this state-
ment ordering is invalid. As a second example, consider the
loops in (e). In this case interchanging is clearly valid since no
dependences are violated in the new execution order.

FIGURE 1. How to Determine When Loop Interchanging Is Valid

real A(25),B(25) scheduled loops. In general, this may require the
do IJ = 1,25 introduction of some extra assignment statements.

A(IJ) = B(IJ) + 2. For instance, the loop
end do

do I=l,N

do J=l,M
A general version of loop collapsing is useful for A(I,J) = B(I,J) + 2.

parallel computers where only a single doall nest end do
is supported or to improve the performance of self- end do

December 1986 Volume 29 Number 12 Communications of the ACM 1197

Special Issue

do t=l,N
,4(I) = B(1) + C(1)
E(1) = F(1) t G(1)
D(1) = A(1) t B(1)

end do

(4

do I=l,N
A(1) = B(1) -t C(1)
I)(I) = A(1) -t B(1)

end do
do I=l,N

E:(I) = F(1) -t G(1)
end do

W

do J=l,N,32
d:o I=J,min(N,J+31)

A(1) = B(I) + C(1)
D(1) = A(I) + B(1)

end do
end do
do J=l,N,32

do I=J,min(N,J+31)
E(1) = F(I) + G(1)

end do
end do

(c)

Fission by name and strip mining are used to improve mem-
ory performance. Assume a target computer with 32-clement
vector registers. Before register allocation is performed, the
input loop (a) will go through the following sequence of trans-
formations. First, fission by name is applied (b), then strip
mining’(c), and finally loop vectorization (d). The target pro-
gram (d) is now a sequence of 32-element vector operations.

do J=l,N,32
K = min(N,J+31)
A(J:K) = B(J:K) + C(J
D(J:K) = A(J:K) + B(J

end do
do J=l,N,32

K = min(N,J+31)
E(J:K) = F(J:K) + G(J

end do

(4

do J=l,N,32
K = min(N,J+31)
vrl t B(J:K)
vr2 +-C(J:K)
vr3 c vrl + vr2
A(J:K) +vr3
vr2 t vr3 + vrl
D(J:K) t vr2

end do
do J=l,N,32

K = min(N,J+31)
vrl c F(J:K)
vr2 -G(J:K)
vr3 t vrl + vr2
E(J:K) t vr3

end do

(4

K)
K)

K)

Registers can now be allocated as shown in (e) (vrl , vr2, and
vr3 are vector registers).

Fission by name is useful in decreasing the number of
registers needed in a loop. Had the statement E (I) =
F (I) + G (I) remained in its original position, either more
registers or more memory read/writes would have been
needed.

FIGURE 2. An Example of Fission by Name and Strip Mining

may be transforrned into

do L=l,N*M
I = r L/M i
J = mod(L--1,M) + 1
A(I,J) = B(I,J) + 2.

end do

regardless of the bounds of the array A.

INTERACTION WITH THE PROGRAMMER
Several user interaction strategies have been used by
optimizing compilers for parallel computers. The
most frequent approach is for the compiler to trans-
late directly into object code and to provide a sum-
mary specifying what was vectorized and what was
not. When something is not vectorized, the compiler
gives a reason, which could be the presence of a
data dependence, the need to assume a dependence

because a subscript range is not known at compile
time, the presence of a call to an unknown routine,
and so on. If users are not satisfied with the out-
come, they may resubmit the program after rewrit-
ing parts of it or after inserting directives or asser-
tions.

For example, consider the following loop:

do I=l,N

A(K(I)) = A(K(I)) + C(I)
end do

Most compilers will not vectorize this loop; instead
they will notify the user that the compiler was
forced to assume a dependence since it did not know
the value of vector K at compile time. If program-
mers know that K is a permutation of a subset of the
integers, they may order the compiler, through a
directive, to vectorize the loop. This directive usu-

1198 Commur~ications of the ACM December 1986 Volume 29 Number 12

Special Issue

do I=l,N

do J=l,N
do K=l,N

C(I,J) = C(I,J)
+ A(I,K) * B(K,J)

end do
end do

end do

(4

do J=l,N

do K=l,N
do I=l,N

C(I,J) = C(I,J)
+ A(I,K) * B(K,J)

end do
end do

end do

04

do J=l,N
do K=l,N

do L=l,N,64
do I=L,min(L+63,N)

C(I,J) = C(I,J)
+ A(I,K) * B(K,J)

end do
end do

end do
end do

(cl

do J=l,N
do K=l,N

do L=l,N,64
I = min(L+63,N)
C(L:I,J) = C(L:I,J)

+ A(L:I,K) * B(K,J)
end do

end do
end do

(4

The translation of (a) illustrates two interesting uses of loop
interchanging. Loop (a) could be vector&d in the form in
which it is presented, but it would require a SUM, which may
cause round-off error problems. The loops can be inter-
changed so that I becomes the innermost index (b). After
strip mining (c), the innermost loop is vectorized (d). Notice
that thanks to loop interchanging the elements of the vectors
in (d) are in contiguous memory locations. Vector register
assignment may now be performed, leading to (e). The block

do J=l,N
do K=l,N

do L=l,N,64
I = min(L+63,N)
n-1 c C(L:I,J)
vr2 c A(L:I,K)
sr0 c B(K,J)
vr3 c vr2 * sr0
vrl c vrl + vr3
C(L:I,J) c vrl

end do
end do

end do

(4

do L=l,N,64
I = min(L+63,N)
do J=l,N

do K=l,N
vrl +- C(L:I,J)
vr2 + A(L:I,K)
sr0 + B(K,J)
vr3 + vr2 * vr0
vrl t vrl -t vr3

C(L:I,J) t-vrl
end do

end do
end do

(9

do L=l,N,64
I = min(L+63,N)
do J=l,N

vrl +-C(L:I,J)
do K=l,N

vr2 -A(L:I,K)
sr0 + B(K,J)
vr3 c vr2 * sr0
vrl +-vrl + vr3

end do
C(L:I,J) c vrl

end do
end do

(9)

loop L may be interchanged to become the outermost loop
(9. We can now illustrate a second consequence of loop
interchanging. The vector register load vr 1 +- C (L : I , J)
and store c (L : I , J) +- vr 1 in (e) are loop invariant and
may be moved outside the innermost loop (g). Loop inter-
changing to increase the number of loop invariant register
loads and stores is also a useful sequential optimization
technique.

FIGURE 3. Two Examples of Loop Interchanging

December 1986 Volume 29 Number 12 Communications of the ACM 1199

Special Issue

ally takes the form of a comment line preceding the
loop.

Another way for the user to supply information to
the compiler is through assertions. This is sometimes
provided as an alternative to compiler directives. For
example, in the previous loop the programmer could
have asserted that K is a permutation of a subset of
the integers. Assertions have two advantages over
directives: They are self-explanatory, and they can
be tested at run time while debugging the program.
Directives, on the other hand, may be a simpler way
or even the only way to specify what the user wants.
For example, directives may be the only way for the
user to request that some part of the code be exe-
cuted sequentially.

A second user interaction strategy is to produce
a restructured source program with vector and/or
concurrent language extensions.” This strategy
makes it possible for the programmer to learn how
a program was translated without having to look at
the assembly code. These restructurers, like the
compilers discussed above, accept directives and
assertions from the user.

Experimental interactive restructurers, such as
the Blaze Restructurer at Indiana University and the
Iw” programming environment at Rice University,
are being developed. Some of these restructurers
rely on the user to specify the transformations, and
users may specify interactively what scalars to ex-
pand, what loops to interchange, which ones to vec-
torize, and so on. These tools make the process of
hand-rewriting programs highly reliable and may
become a useful tool for program development.

Commercial interactive vectorizers are already
available.13 These interactive tools allow users to
find the most time-consuming parts of their pro-
grams and rewrite them. They will also aid users
writing vectorizable code in order to get the best
performance.

in

SUMMARY
When the Cray-1 was first delivered to Los Alamos
Scientific Laboratories in 1976, there was a great
deal of skepticism about whether compiler technol-
ogy would ever catch up with hardware. Much re-
search had been done for the Texas Instruments
ASC and for the Illiac IV on automatic detection of
parallelism, but it did not yet meet the needs of the
user community. Since that time, several vector
supercomputers and minisupercomputers have been
announced, each with its own vectorizing compiler.

“This is the approach taken by Parafrase. at the University of Illinois. KAP,
from Kuck and Associates. PFC. at Rice University, and VAST from Pacific
Sierra.
‘a Notably, Forge from Pacific Sierra for the Cray supercomputers. and an
interactive vectorizer facility for the Fujitsu supercomputers [ZO].

Some of these compilers are more powerful than
others, but all are much better than anything hoped
for in 1976.

Now, a new generation of computers with multi-
ple processors is coming. Compilers to detect paral-
lelism suitable for spreading over many processors
already exist, and more will follow. Many of the
optimizations that. were used for vectorization are
also useful for multiprocessing. That so many of the
ideas can be shared by different architectures will
make it easier to write compilers for new machines
as time passes.

Acknowledgments. The authors would like to
thank U. Banerjee, W. L. Harrison, A. Veidenbaum,
and the referees for their many helpful comments
about this article.

Further Reading

Optimizing compiler algorifhms. See [5], [28], [29],
[33], [al], and [x].

Dependence Analysis. See [8]-[lo].

REFERENCES
1. Abu-Sufah, W.. Kuck. D.J.. and Lawrie. D.H. On the performance

enhancement of paging systems through program analysis and trans-
formations. IEEE Trans. Comput. C-30, 5 (May 1981), 341-356.

2. Aho, A.V., Sethi. R.. and Ullman. J.D. Compilers: Principles, Tech-
ni$“es, and Tools. Addison-Wesley, Reading, Mass.. 1986.

3. Allen, F.E.. and Cocke, J. A catalogue of optimizing transformations.
In Design and Opfimizatim of Compilers, R. Rustin, Ed. Prentice-Hall,
Englewood Cliffs, N.J., 1972. pp. l-30.

4. Allen, F.E.. Carter, J.L.. Fabri, J.. Ferrante, J., Harrison, W.H.,
Loewner. P.G., and Trevillyan. L.H. The experimental compiling
system. IBM 1. Res. Dev. 24, 6 [Nov. 1980), 695-715.

5. Allen, J.R., and Kennedy, K. PFC: A program to convert Fortran to
parallel form. Rep. MASC-TR82-6. Rice Univ.. Houston, Tex., Mar.
1982.

6. Allen. J.R., and Kennedy, K. Automatic loop interchange. In Proceed-
ings of !he ACM SIGPLAN 84 Symposium on Compiler Comtruction
(Montreal, June 17-22). ACM. New York, 1984, pp. 233-246.

7. American National Standards Institute American National Standard
for Iuformation Systems. Programming Language Fortran.SB (X3.9-198x].
Revision of X3.9-1978. Draft S8, Version 99. American National Stan-
dards Institute. New York, Apr. 1986.

8. Banerjee. U. Speedup of ordinary programs. Ph.D. thesis, Rep.
79-989, Dept. of Computer Science, Univ. of Illinois at Urbana-
Champaign, Oct. 1979.

9. Banerjee. U. Direct parallelization of call statements-A review.
Rep. 576. Center for Supercomputing Research and Development,
Univ. of Illinois at Urbana-Champaign, Nov. 1985.

10. Banerjee. U., Chen, S.C.. Kuck. D.J., and Towle, R.A. Time and
parallel processor bounds for Fortran-like loops. IEEE Trans. Compuf.
C-28, 9 (Sept. 1979). 660-670.

11. Brode, B. Precompilation of Fortran programs to facilitate array
processing. Computer 14, 9 (Sept. 1981), 46-51.

12. Burke, M.. and Cytron. R. Interprocedural dependence analysis and
parallelization. Proceedings of the SIGPLAN 86 Symposium on Compiler
Construction, SIGPLAN Not. 21, 7 (July 1986), 162-175.

13. Burroughs Corp. Numerical Aerodynamic Simulation Facility Feasibility
Study. Burroughs Corp., Paoli, Pa., Mar. 1979.

14. Callahan. D., Cooper, K.D., Kennedy, K., and Torczon, L. Inter-
procedural constant propagation. In Proceedings of the SZGPLAN 86
Symposiunt ou Compiler Construction, SIGPLAN Not. 21, 7 (July 19861,
152-161.

15. Chen. SC. Large-scale and high-speed multiprocessor system for
scientific applications: Cray X-MP Series. In High-Speed Computation,
NATO AS1 Series, vol. F7, J.S. Kowalik, Ed. Springer-Verlag, New
York, 1984. pp. 59-67.

1200 Communicatiom of thr, ACM December 1986 Volume 29 Number 12

Special Issue

16. Cytron, R.G. Doacross: Beyond vectorization for multiprocessors. In
Procecdiqs of fhe 1986 International Conference cm Parallel Processing
(St. Charles. 111.. Aug. 19-22). IEEE Press, New York, 1986. pp. 836-
644.

17. Davies, I.. Huson. C., Macke. T., Leasure, B., and Wolfe. M. The
KAP/S-1: An advanced source-to-source vectorizer for the S-l Mark
IIa supercomputer. In Proceedirrgs of the 1986 I~rfernatiorral Corrferencc
011 Parallel Processi?lg (St. Charles, Ill.. Aug. 19-22). IEEE Press, New
York, 1986. pp. 833-835.

18. Davies, I.. Huson. C.. Macke, T.. Leasure, B., and Wolfe. M. The
KAP/205: An advanced source-to-source vectorizer for the Cyber
205 supercomputer. In Proceedings of the 1986 Infernafional Confer-
ence DII Parallel Processiq (St. Charles, 111.. Aug. 19-22). IEEE Press,
New York. 1986. pp. 827-832.

19. Davies, J.R. Parallel loop constructs for multiprocessors. MS. thesis,
Rep. 81-1070. Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign, May 1981.

20. Dongarra. 1.1.. and Hinds, A. Comparison of the Cray X-MP-4. Fu-
jitsu VP-ZOO. and Hitachi S-810/20: An Argonne perspective. Rep.
ANL-85-19. Argonne National Laboratory, Argonne, Ill., Oct. 1985.

21. Guzzi, M.D. Cedar Fortran Reference Manual. Rep. 601. Center for
Supercomputing Research and Development, Univ. of Illinois at
Urbana-Champaign, Nov. 1986.

22. Harrison, W.L. Compiling LISP for evaluation on a tightly coupled
multiprocessor. Rep. 565. Center for Supercomputing Research and
Development. University of Illinois at Urbana-Champaign, Mar.
1966.

23. Harrison. W.L., and Padua, D.A. Representing S-expressions for the
efficient evaluation of Lisp on parallel processors. In Proceedings of
the 1986 Irrfernafiotd Conference on Pnrallel Processing (St. Charles,
Ill.. Aug. 19-22). IEEE Press, New York, 1986. pp. 703-710.

24. Huson. CA. An in-line subroutine expander for parafrase. MS. the-
sis, Rep. 82-1118. Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign, Dec. 1982.

25. Kamiya, S., Isobe, F.. Takashima. H.. and Takiuchi, M. Practical
vectorization techniques for the Facom VP. In information Processing
83, R.E.A. Mason Ed. Elsevier North-Holland, New York, 1983.
pp. 369-394. pp. 369-394.

26. Kildall. G.A. A unified approach to global program optimization. In 26. Kildall. G.A. A unified approach to global program optimization. In
Conferewe Record of the 1st ACM Symposium on Principles of Program- Conferewe Record of the 1st ACM Symposium on Principles of Program-
ming LarlxuaXes (POPL) (Boston. Mass., Oct. l-3). ACM, New York, ming LarlxuaXes (POPL) (Boston. Mass., Oct. l-3). ACM, New York,
1973, pp.-194-206.

27. Kruskal. C.P.. and Weiss, A. Allocating independent subtasks on
parallel processors. In Proceedings of the 1984 International Conference
on Parallel Processing. R.M. Keller, Ed. IEEE Press. New York, Aug.
1964. pp. 236-240.

28. Kuck. 0.1. Parallel processing of ordinary programs. In Advances in
Computers. vol. 15. M. Rubinoff and MC. Yovits, Eds. Academic

29.

30.

31.

32.

33.

34.

35.

36.

37.

Press, New York, 1976. pp. 119-179.
Kuck, D.J. A survey of parallel machine organization and program-
ming. ACM Compuf. Surv. 9, 1 (Mar. 1977), 29-59.
Kuck, D.J.. and Stokes, R.A. The Burroughs scientific processor
(BSP). Special Issue on Supersystems, IEEE Trans. Comput. C-31, 5 (May
7962).363-376.
Kuck. D.J., Davidson, E.S., Lawrie, D.H., and Sameh, A.H. Parallel
supercomputing today and the Cedar approach. Science 231, 4740
(Feb. 28, 1986). 967-974.
Kuck. D.]., Kuhn. R.H., Leasure, B.. and Wolfe, M. The structure of
an advanced retargetable vectorizer. In Tuforial on Supercomputers:
Designs and Applications, K. Hwang, Ed. IEEE Press, New York, 1984,
pp. 163-178.
Kuck. D.J., Kuhn, R.H., Padua. D.A., Leasure, B., and Wolfe, M.
Dependence graphs and compiler optimizations. In Proceedings of the
8th ACM Symposium on Principles of Programming Languages (POPL)
(Williamsburg, Va.. Jan. 26-28). 1981, pp. 207-218.
Kuck, 0.1.. Sameh. A.H., Cytron, R., Veidenbaum, A.V., Polychrono-
poulos. CD.. Lee. G., McDaniel, T., Leasure. B.R., Beckman, C..
Davies, J.R.B., and Kruskal. C.P. The effects of program restructur-
ing, algorithm change, and architecture choice on program perform-
ance. In Proceedings of the 1984 lnternationnl Conference on Parallel
Processing, R.M. Keller, Ed. IEEE Press, New York, Aug. 1984,
pp. 129-138.
Loveman. D.B. Program improvement by source-to-source transfor-
mation. 1. ACM 24, 1 (Jan. 1977), 121-145.
Lundstrom. SF.. Barnes, G.H. A controllable MIMD architecture. In
Proceedings of rhe 1980 Infernational Conference on Parallel Processing
(BeIIaire, Mich.. Aug. 26-29). IEEE Press, New York, 1980. pp. 19-27.
Mehrotra, P.. and Van Rosendale, J. The Blaze Language: A parallel
language for scientific programming. Rep. 85-29, Institute for Com-
puter Applications in Science and Engineering, NASA Langley Re-
search Center, Hampton, Va., May 1985.

38.

39.

40.

41.

42.

43.

44.

45.

Midkiff, S.P., and Padua. D.A. Compiler generated synchronization
for Do loops. In Proceedings of fhe 1986 Inlernaliomzl Conference on
Parallel Processirlg (St. Charles, Ill., Aug. 19-22). IEEE Press, New
York. 1986.
Miura, K.. and Uchida. K. Facom vector processor VP-loo/VP-200.
In HighSpeed Computafiotl. NATO AS1 Series, vol. F7, IS. Kowalik.
Ed. Springer-Verlag, New York, 1984. pp. 127-138.
Nagashima. S.. Inagami, Y.. Odaka. T.. and Kawabe. S. Design con-
sideration for a high-speed vector processor: The Hitachi S-810. In
Proceedings of fhe IEEE International Conference on Computer Design:
VLSI irr Compulers. ICCD 84. (Port Chester. N.Y., Oct. 8-11). IEEE
Press. New York, 1984. pp. 238-243.
Ottenstein, K.J. A brief survey of implicit parallelism detection.
In MlMD Computation: The HEP Supercomputer arrd its Applications,
J.S. Kowalik. Ed. MIT Press, Cambridge, Mass., 1985.
Padua. D.A. Multiprocessors: Discussion of some theoretical and
practical problems. Ph.D. thesis, Rep. 79-990. Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign. Oct. 1979.
Padua, D.A., Kuck. D.J., and Lawrie, D.H. High-speed multi-
processors and compilation techniques. IEEE Trans. Compur. C-29, 9
(Sepl. 1980). 763-776.
Polychronopoulos, C.D. Program restructuring, scheduling, and com-
munication for parallel processor systems. Ph.D. thesis, Rep. 595,
Center for Supercomputing Research and Development, Univ. of
Illinois at Urbana-Champaign, 1986.
Reif, I.H., and Lewis, H.R. Symbolic evaluation and the global value
graph. In Corlference Record of the 4th Annual ACM Symposium on
Principles of Programming Languages (POPL) (Los Angeles, Calif.,
Ian. 17-19). ACM, New York, 1977, pp. 104-118.

46. Scarborough, R.G.. and Kolsky, H.G. A vectorizing Fortran compiler.
IBM 1. Res. Dev. 30. 2 (Mar. 1986). 163-171.

47. Tang, P.. and Yew, P. Processor self-scheduling for multiple-nested
parallel loops. In Proceedings of the 1986 Infernational Conference on
Parallel Processiug (St. Charles, Ill., Aug. 19-22). IEEE Press, New
York, 1986. pp. 528-535.

48. Thornton, I.E. Design of a Computer: The Control Data 6600. Scott,
Foresman and Co., Glenview, Ill., 1970.

49. Triolet, R., Irigoin. F., and Feautrier, P. Direct parallelization of call
statements. In Proceedings of fhe SIGPLAN 86 Symposium on Compiler
Consfrucfion, SlGPLAN Not. 21, 7 (July 1986), 176-185.

50. Veidenbaum. A. Program optimization and architecture design is-
sues for high-speed multiprocessors. Ph.D. thesis. Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, 1985.

51. Wegman. M., and Zadek. K. Constant propagation with conditional
branches. In Conference Record of fhe 12th Annual ACM Symposium
on Principles of Progranwing Languages (POPL) (New Orleans, La..
Jan. 14-16). ACM, New York, 1985, pp. 291-299.

52. Wolfe, M.1. Optimizing supercompilers for supercomputers. Ph.D.
thesis, Rep. 82.1105. Dept. of Computer Science, Univ. of Illinois at
Urbana-Champaign, Oct. 1982.

53. Yasumura. M., Tanaka, Y.. Kanada, Y., and Aoyama, A. Compiling
algorithms and techniques for the S-810 vector processor. In Proceed-
ings of rhe 1984 lrltenmtiomd Conference on Parallel Processing, R.M.
Keller, Ed. IEEE Press, New York, Aug. 1984, pp. 285-290.

CR Categories and Subject Descriptors: Cl.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors)-array and
vector processors: nlultiple-instruction-stream, multiple-da&stream proces-
sors (MIMD): parallel processors; pipelirle processors; single-instruc-
tion-sfream, nlulfiple-data-streant processors (S/MD): D.2.7 [Soft-
ware Engineering]: Distribution and Maintenance-restructuring; D.3.3
[Programming Languages]: Language Constructs-concurrent program-
ming slrucfures; D.3.4 [Programming Languages]: Processors-code gener-
ation; compilers; optimization; preprocessors

General Terms: Languages, Performance

Authors’ Present Addresses: David A. Padua. Center for Supercomputing
Research and Development, University of Illinois at Urbana-Champaign,
Urbana, IL 61801: Michael J. Wolfe, Dept. of Computer Science, Univer-
sity of Illinois at Urbana-Champaign, Urbana, IL 61801; and Kuck and
Associates, 1808 Woodfield. Savoy, IL 61874.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

December 1986 Volume 29 Number 12 Communications of the ACM 1201

