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In multiprocessors, performance improvement is typically achieved by exploring parallelism with
fixed granularities, such as instruction-level, task-level, or data-level parallelism. We introduce
a new reconfiguration mechanism that facilitates variations in these granularities in order to
optimize resource utilization in addition to performance improvements. Our reconfigurable mul-
tiprocessor QuadroCore combines the advantages of reconfigurability and parallel processing. In
this paper, a unified hardware-software approach for the design of our QuadroCore is presented.
This design-flow is enabled via compiler-driven reconfiguration, which matches application-specific
characteristics to a fixed set of architectural variations. A special reconfiguration mechanism has
been developed that alters the architecture within a single clock cycle.

The QuadroCore has been implemented on Xilinx XC2V6000 for functional validation and on
UMC’s 90nm standard cell technology for performance estimation. A diverse set of applications
have been mapped onto the reconfigurable multiprocessor to meet orthogonal performance char-
acteristics in terms of time and power. Speedup measurements show a 2-11 times performance
increase in comparison to a single processor. Additionally, the reconfiguration scheme has been
applied to save power in data-parallel applications. Gate-level simulations have been performed
to measure the power-performance trade-offs for two computationally complex applications. The
power reports confirm that introducing this scheme of reconfiguration results in power savings in
the range of 15-24%.

Categories and Subject Descriptors: [Processor Architectures|: Multiple Data Stream Archi-
tectures (Multiprocessors)—C.1.2

General Terms: Reconfigurable Multiprocessors, Compilation for Multiprocessors

1. INTRODUCTION

Partitioning large applications onto multiple processing elements typically intro-
duces performance speedups. However, the granularity of application partitioning
is entirely application dependent. For instance, an application with a fine-grained
parallelism allows operating instructions in parallel. Superscalar and VLIW pro-
cessors are classical examples of architectures for instruction-level parallelism. At a
coarse-grained level, larger structures of a program like loops, functions, threads, or
tasks are executed in parallel. Vector and SIMD processors explore data-level paral-
lelism (DLP). In addition, partitioning a given application also involves an overhead
in terms of inter-processor communication and synchronization. Hence, the influ-
ence of the granularity of partitioning on the performance of the system identifies
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the parallelization paradigm to be adapted. Conventionally, executing applications
on multiprocessors is restricted to a single granularity, which is predetermined by
the programming style and by the inherent parallelism in the underlying hardware.
Task-level or data-level parallelism is usually exploited manually by partitioning an
application by hand or with special programming models. Automatic compilation
is often limited to addressing parallelism at the instruction or loop-level. Here, we
explore the advantage of enhancing a multiprocessor with reconfigurability that en-
ables variations in terms of the degrees of parallelism, frequency of synchronization,
and amount of communication. This gives rise to a single, unified architecture that
offers task, data, and instruction-level parallelism.

In our approach, called CoBRA!, shown in Figure 1, compile-time analysis de-
termines the schedule for reconfiguration during run-time. Reconfiguration alters
the architecture of the QuadroCore within a fixed set of operating modes, called
reconfigurable architectural variants during run-time. A prominent example is to
reconfigure between parallelization paradigms like MIMD and SIMD. Given a pro-
gram that exhibits both regular and non-regular structures, the compiler determines
the best execution mode by analyzing the parallelism during compilation. This has
a number of benefits like improved performance, efficient resource utilization, re-
duced code-size, and power consumption. Further, the usage of a manageable set
of variants leads to an enormous reduction in the design space, compared to fine-
grained reconfigurable architectures. The compiler then addresses this finite design
space efficiently by using well-known program analysis techniques [Muchnik 1997].
Primarily, our compiler enables transparent usage of the reconfiguration variants
without any manual effort in order to reduce time-to-market. In the approach pre-
sented in this paper, reconfiguration is performed with a very low overhead during
run-time by switching fixed, coarse-grained components like instruction decoders,
ALUs and register banks. The preliminary concepts of the compiler-driven recon-
figuration in QuadroCore have been presented in [Hussmann et al. 2007]. This
approach is in contrast to research using fine-grained reconfigurable architectures,
where reconfiguration typically incurs a significant overhead [Compton and Hauck
2002]. Reconfigurability in the QuadroCore is introduced within the existing archi-
tecture, such that the processor’s base instruction set remains unaltered. Quadro-
Core is also different from processors such as Stretch [Gonzalez 2006], where ad-
ditional instructions are mapped onto reconfigurable logic (called instruction set
extension fabric) to enable performance acceleration. In Stretch, the added in-
structions are application-specific, whereas in QuadroCore the added instructions
ensure co-operative processing between the processors and are independent of the
application mapped.

The organisation of this paper is as follows: Section 2 motivates opportunities
to reconfigure our multiprocessor architecture and compares it with existing ap-
proaches. Also, in this section the reasoning for switching between each of the
reconfigurable modes is presented. The structure and concepts of both the hard-
ware architecture and compiler backend are outlined in Section 3. Section 4 analyses
scalability and provides and experimental setup for accelerated performance and
functional validation of the QuadroCore architecture. Application mapping and

LCompiler-Driven Dynamic Reconfiguration of Architectural Variants (merge two Ds to a B)
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Fig. 1. Philosophy of Compiler-driven Reconfiguration of Architectural Variants

evaluations for instruction-level parallelism and application-specific power savings
via reconfiguration are detailed in this section. Finally, conclusions and future work
are discussed in Section 5.

2. RECONFIGURABILITY IN THE QUADROCORE ARCHITECTURE

Figure 2 shows a high-level representation of our QuadroCore architecture. The
multiprocessor architecture comprises four RISC-based 32-bit embedded proces-
sors, called N-Core [Gruenewald et al. 2004]. The N-Core processors have a three-
stage pipeline and a fixed 16-bit opcode length. Each processor has a 16 x 32
local register file and operates independently with individual program memories.
Most arithmetic and logical operations provide a single-cycle execution time and
load/store instructions have a three-cycle execution time. Sharing of data among
the processors in the cluster is enabled via an external memory, accessible over a
shared bus, in our case a Wishbone bus [Silicore 2002]. Access to this external mem-
ory is managed via a round-robin arbitration mechanism. This base architecture
represents a typical MIMD mode of operation.

Variations in synchronization, method of communication, and type of paral-
lelism within the architecture are introduced via the added reconfigurable oper-
ating modes. A mode switch is achieved via reconfiguration, in between executing
different applications or even within stages of the same application. During the
execution of a single large application, this reconfiguration scheme offers a very
low overhead, since the time to switch between modes is optimized to a single
clock cycle. This scheme is advantageous, since the best suited mode is chosen
for every application or within an application, with reconfiguration time making
a very minimal impact on the total execution time (detailed in Section 4). The
individual processors allow run-time modifications to the architecture and support
self-reconfiguration, as determined during compilation. An explicit requirement for
a reconfiguration controller, which is typical in FPGA-based designs, is eliminated
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Fig. 2. Overview of QuadroCore Architecture

in this methodology, since the configuration information is included as additional
instructions, as illustrated below. Additionally, the need for separate configura-
tion memory space is avoided, since the configuration data is embedded into the
instruction stream. Another architecture that configures to varying granularities
and parallelism as per work loads, called TRIPS, is presented in [Sankaralingam
et al. 2006]. Unlike TRIPS, the QuadroCore is based on introducing reconfigurabil-
ity to our existing embedded processors (called N-core) without altering the base
RISC instruction set. Our focus is to introduce methods of reconfiguration that
can be extended to most multiprocessor architectures with minimal design changes.
The adaptability based on the type of parallelism, viz., thread and instruction-level
parallelism is in the same lines as Voltron [Zhong et al. 2007]. However, in Quadro-
Core the performance analysis using the standard cell implementation addresses
orthogonal application-specific objectives such as time and power.

Reconfiguration Mechanism Figure 3 illustrates the principle of the reconfigura-
tion mechanism in QuadroCore. The layer of multiplexers between the decode and
execute stages of the processors allow reconfiguring the control path, when encoun-
tered with the reconfiguration instruction. These additional multiplexers and the
associated control logic influence the timing characteristics and the chip area. The
figure represents a high-level functional diagram of the QuadroCore control-path.
Additionally, instruction set extensions to enhance collective branching and sharing
branch conditions were added to ease co-operative processing. Overall, the goal was
to minimize the impact of these architectural enhancements on the total area and
clock frequency. The figure also illustrates that the instruction pipeline remains
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unaltered and reconfiguration in this context is enabled via a special instruction
that configures the stage of multiplexers. Once configured, the processors operate
using the base instructions as previously, but with an altered control path.
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Fig. 3. Principle of Control Flow Reconfiguration in QuadroCore

Reconfiguration Instruction Format In FPGA-based designs, a configuration file
includes both control and data information required to configure the individual
configurable logic blocks, memories and to define their interconnections. In con-
trast, the reconfiguration in QuadroCore is triggered by a single instruction, where
the choice of the mode is decoded from the instruction. The format is as shown
in Figure 4, with SIMD mode as an example.

15 21 0]
OPCODE MODE

M 10 SIMD

00 MIMD

Fig. 4. Instruction Format for Reconfiguration

This reconfiguration instruction introduces variations in the architecture. The
choice of the correct architectural variant is made using program analysis techniques
by the compiler. The variations in application characteristics and the matching op-
erating mode are listed in Table I. These alterations are introduced by executing
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the special reconfiguration instruction between application boundaries or within an
application with diverse characteristics in terms of parallelism, amount of commu-
nication, and synchronisation.

Table I. Reconfigurable Architectural Variants

Operating Mode Application Characteristics
Asynchronous MIMD Coarse grained, task-level parallelism
Synchronous MIMD Fine grained, instruction-level parallelism
SIMD Data-level parallelism

Fast Memory Access Large data exchange, data-level parallelism
Comm. via Shared Reg File | Few, frequent register exchange, fine-grained

The following subsections describe the reconfiguration modes to enables alter-
ations within methods of synchronization, communication, and the reconfiguration

between SIMD and MIMD.

2.1 Synchronization

Synchronization mechanisms employed in multiprocessors can be categorized as
synchronous (lock-step) or completely asynchronous operations. Often, the syn-
chronization overhead is a constraint for the granularity of parallelism explored.
Fine-grained parallelism necessitates frequent synchronization on account of depen-
dencies between instructions. In the presence of coarse-grained parallelism, proces-
sors can operate more independently and synchronize only when necessary. Hence
in QuadroCore, synchronization is chosen as a run-time option that allows switch-
ing between the asynchronous and synchronous mode of operation with an overhead
of a single clock-cycle. In the asynchronous mode of operation, barrier instructions
allow synchronization between independently operating instruction streams. In the
synchronous mode, the instruction streams operate in lock-step, synchronous at
every instruction. The presence of two synchronization modes enables exploring
the advantages of both lock-step architectures and asynchronous operation inter-
changeably. Hence, a variable granularity can be achieved depending on the mode
of operation, varying between a fine-grained architecture exploring instruction-level
parallelism and a coarse-grained architecture with task-level parallelism. The syn-
chronous mode is selected in case of many inter-processor dependencies. Otherwise,
infrequent synchronization using barriers is chosen.

In comparison to our approach, synchronization is always achieved using barriers
in [Dietz et al. 1989]. Hence, an application with fine-grained parallelism incurs
a large synchronization overhead. Similarly, a recent commercial multiprocessor
architecture called AMBRIC [Halfhill 2006] consists of RISC processors (called
‘brics’) arranged in a cluster, where each individual core runs at its own clock
speed. Processors are synchronized only when data needs to be exchanged. In
both these cases [Dietz et al. 1989; Halfhill 2006], the architecture is more suited
for applications with coarse-grained parallelism due to the overhead of explicit
synchronization for each data transfer.
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2.2 Communication

Inter-processor data dependencies demand a mechanism for exchanging register
values. This can be implemented using message-passing between distributed mem-
ories or by using a single shared-memory. Message passing is more suited for large
amounts of data exchange but infrequent communication. To enable fast and fre-
quent exchange of register values between the processors in QuadroCore, a shared
register file was included to ease communication. Exchange of infrequent, but large
amounts data can be enabled via the external shared memory.

Considering related architectures, AMBRIC [Halthill 2006] offers a point-to-point
communication via channels, which automatically manage the synchronization be-
tween the processors. However, data transfer is limited to data-exchange between
neighbouring processors. In [Gupta 1990], Gupta presents the integration of shared
register channels into a RISC based multiprocessor, which provides a broadcast
communication. Hence, communication and synchronization are combined in a
single method. On the other hand, it is restricted to an asynchronous execution,
because communication with channels always implies explicit synchronization. Sil-
icon Hive’s processor [Mei et al. 2005] consists of multiple cells with distributed
register files. The interconnection network allows data transfer between the func-
tional units and register files, always operating synchronously. In our architecture,
a processor can communicate with a subset of the processors using a broadcast
mechanism. Furthermore, two or more processors can be synchronized explicitly if
necessary, or operate in lock-step, in case of frequent data exchange.

2.3 SIMD / MIMD

SIMD execution is well suited for regular program structures with data-level paral-
lelism, which can be found in scientific or multimedia computations. Programs with
non-regular structures can be executed in a MIMD manner to exploit the inherent
instruction or task-level parallelism. In the SIMD mode introduced in QuadroCore,
a single instruction stream is fetched and decoded by the first processor, but ex-
ecuted by all processors with data residing in their respective register banks and
local memories. The absence of instruction fetch and decode operations by the
participating processor results in reduced power consumption. Switching between
MIMD and SIMD execution becomes useful if programs executed on the multipro-
cessor contain both regular and non-regular structures. Instead of selecting one
execution mode statically, the compiler can identify the parts of a program suited
for MIMD or SIMD execution and switch between the modes. The CHARISMA?
module of our CoBRA compiler applies well-known scheduling and vectorization
techniques [Kennedy and Allen 2002] at first and finally selects the best combina-
tion of modes. The selection heuristic can be based on parameters like execution
time, code size, or estimated energy consumption.

In the same context, the authors in [Barretta et al. 2002] present a multi-clustered
VLIW architecture, which can be switched between ILP (Instruction-level paral-
lelism) and SIMD modes. The associated compiler is expected to identify pieces
of code that can be executed in SIMD mode by determining accesses to disjoint

2Compiler Handles Architectural Reconfiguration Integrating SIMD MIMD Automatically
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memory blocks (provided in the source code or computed automatically). The
CoBRA compiler uses the Superword Level Parallelism (SLP) approach [Larsen
and Amarasinghe 2000], which targets sequential code in basic blocks instead of
performing complex transformations on loop nests. In contrast to classical vector-
ization techniques, SLP can also be exploited when vector parallelism is scarce or
loop transformations cannot be applied. The authors have shown that focusing
on SLP leads to simple and robust compiler implementations while still achieving
a good performance. Vector parallelism can be transformed to SLP by loop un-
rolling. The CoBRA compiler unrolls loops depending on the number of targeted
processors.

Wz, - Asynchronous
Synchronous
SIMD
Reconfiguration
Synchronization

Asynchronous

Synchronization

Reconfiguration

Total Execution Time

Synchronous

Reconfiguration

SIMD

Processor 1 Processor 2 Processor 3 Processor 4

Fig. 5. Illustration of Reconfigurable Operating Modes in QuadroCore

To summarize, Figure 5 illustrates an example of mode changes during execution
on four processors achieved via instruction streams in the QuadroCore architecture.
Initially, all the processors operate in the default asynchronous mode. Due to
application demands, processors 1-3 are required to be switched to the synchronous
mode, which is done by synchronisation using barriers, followed by reconfiguration
to switch to synchronous mode. During this time, processor 4 continues to operate
in the default asynchronous mode. Next, all the four processors are reconfigured
to operated in the SIMD mode. In all these cases, it has to be noted that the
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instruction stream itself includes the configuration information to allow switching
between the fixed set of reconfigurable modes. The mode changes are determined
during compile-time and the architectural changes (reconfiguration) are inferred
during run-time.

3. CONCEPTS OF HARDWARE AND COMPILER

Figure 2 shows the QuadroCore architecture, where the extensions to the original
base architecture are highlighted in grey. Additionally, introducing the reconfig-
urable modes marginally alters the control path of the processor; viz. address
generation and the forwarding of control signal after the instruction fetch and de-
code stages. Each of the processors is composed of coarse-grained building blocks
such as decoder, 16 x 32 registers file, 32-bit ALU and 32K local instruction and
data memory. The memory hierarchy provides a single cycle access to the local
register file, a two clock cycle access to the shared register file, a three clock cycle
access to local memory, and requires a minimum of six cycle overhead to the shared
external memory. Hence, a single external memory access requires six clock cycles
and extends up to a worst case value of fifteen clock cycles, when all the processors
make a simultaneous access, on account of the arbitration mechanism.

The instruction set architecture of the N-Core processor provides about 11% free
opcode space to allow architectural enhancements. This free opcode space has been
utilized to add instruction set extensions that permit run-time modifications to the
architecture and support for co-operative operation of multiple instances of the
same processor. These instructions include operations such as sharing of branch
condition, collective branching, and reconfiguration to enable switching between the
presented operating modes. The hardware modifications on account of introduced
instruction set extensions have been optimized to minimize the effect of altering
the processor’s critical path. With area as a trade-off for the processor synthesis,
the architecture is preserved such that the maximum operating frequency is only
marginally affected (detailed analysis refer Section 4.2).

In order to alter the intra-cluster communication between processors, a layer of
interconnect was introduced between decode and execute stages of all the proces-
sors in the cluster. The interconnect network allows alterations to the control flow
via instruction streams. The layer of interconnect is steered by a special recon-
figuration instruction, which defines the operating mode of the processor. This
instruction controls the operation of the reconfigurable interconnects. As deter-
mined during compilation, the reconfigurable interconnect is configured as defined
by the reconfiguration instruction in a single clock cycle. This additional reconfig-
urable interconnect marginally influences the timing characteristics of the cluster,
but since it is an independent operation, it does not interfere with the existing
instruction set architecture.

3.1 Structure of the Compiler Backend

Figure 6 illustrates the structure of the compiler backend, which has been derived
from an existing backend for superscalar processors [Hussmann et al. 2005]. In
contrast to the original backend, it features three additional phases (highlighted in
grey), that are explained here. In order to support retargetability the QuadroCore
was described by an abstract processor model, which was specified using our high-
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level processor specification language UPSLA® [Bonorden et al. 2003]. The UPSLA
compiler is used to generate machine-specific parts of the compiler backend as well
as the cycle-accurate software simulator.
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Fig. 6. Backend Structure: Compiler Driven Dynamic Reconfiguration of Architectural Variants

Processor partitioning decomposes into partitioning of data objects and alloca-
tion of functional units, which is needed as input for the parallelization phase. The
data partitioning neglects global data, which is stored in the external memory and
therefore can be accessed by all processors. Instructions accessing local structures
are assigned to the processor whose stack contains the data. Concretely, data par-
titioning is based on an affinity graph whose nodes correspond to the variables of a
function. The affinities between variables are modelled as edge weights and indicate
communication costs incurred if such variables are stored on different processors.
The size of variables can be represented by node weights in order to balance the reg-
ister and memory requirements. The resulting graph is partitioned using common
graph partitioning techniques. Our current prototype uses the graph partitioning
tool set METIS [Karypis and Kumar 1998], which aims at achieving approximately
equally sized partitions, for load balancing between processors. Functional units
are allocated using the BUG algorithm by Ellis [Ellis 1986]. We envision a holistic
processor partitioning method based on affinity graphs, which considers both data
objects and instructions.

The parallelization phase is implemented as a separate component called CHAR-
ISMA, whose basic idea has been presented in Section 2.3. An important challenge
affects the granularity of the code integration: The referred scheduling and vec-
torization techniques operate on quite different contexts like basic blocks, loops,
or traces. In order to simplify the first prototype implementation, we decided to
perform fine-grained parallelization on basic block level. Otherwise, a schedule for

3Unified Processor Specification Language
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a loop might correspond to multiple schedules for the basic blocks of the loop, for
instance. Furthermore, additional glue code is needed for software-pipelined loops
to integrate them into a machine. In the future, we will also handle other techniques
operating on loop level or optimizing traces. Currently, we use list scheduling for
the scheduling part of the parallelization phase and vectorization is based on an
adapted version of SLP [Larsen and Amarasinghe 2000] (see Section 2.3).

Immediately after scheduling, the remote data dependencies between different
processors are determined. This information is used for the placement of commu-
nication code to exchange register values, which is described in Section 3.3.2. After
register allocation and peephole optimization, re-scheduling is performed to produce
a more compact schedule. Instead of just applying local optimizations to the exist-
ing schedule, the Data Dependence Graph (DDG) is re-constructed and scheduled
again. This phase is also capable of inserting barrier instructions within a basic
block on-the-fly. The compiler backend relies on a coherent model of the targeted
processor. Commonly used methods are implemented in modules to enable code
sharing, which offers an efficient validation of the compiler as well as adaption to
similar architectures. Further details can be found in [Hussmann 2008].

The following sections present concepts for both — the QuadroCore architecture
and the associated compiler design.

3.2 Realization of Synchronization

Synchronization between a certain set of processors P is realized by executing a
special barrier instruction on each processor in P. As soon as all processors in
P have executed their barrier instruction, they can continue execution. If only a
proper subset P’ C P has reached a barrier, the processors in P’ must wait for the
remaining processors. In order to synchronize disjoint sets of processors at the same
time independently, a barrier instruction has an immediate field which represents
the set P as a bitmask, called the barrier mask. This mask is matched with the
corresponding set of processors.

3.2.1 Hardware Support for Synchronization. In the asynchronous mode of op-
eration, barrier instructions synchronize between independently operating instruc-
tion streams. Since the task of barrier placement is optimized during compilation,
the hardware architecture has to ensure a very low cost instruction execution time
without affecting the system’s operating frequency. In our architecture, this syn-
chronization is achieved in a single clock cycle, where each processor accesses a
barrier status register asynchronously. Depending on when each of the processor
encounters a barrier instruction, the barrier status register is set accordingly. When
the required subset of barriers has been reached, the register is reset and the status
is provided simultaneously to all the processors. Hence, constant polling of an ex-
ternal memory address, employed in classical synchronization methods is avoided.
The single cycle restriction introduces a minimal variation in the system’s operating
frequency, discussed later in Section 4. This method of synchronization is faster
than techniques implemented via software barriers in recent implementations such
as in [Ito et al. 2008].

In the synchronous mode, the instruction streams operate in lock-step, syn-
chronous fashion at every instruction. This ensures a predictable behaviour to
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allow the compiler to schedule the instruction to explore the maximum degree of
instruction-level parallelism. The instructions are restricted to fixed cycles per in-
struction, explicitly fixing the execution time for all instructions. For example,
instructions with data-dependent execution lengths, such as early exits in multi-
plications, are disabled. Although the execution time of each instruction is forced
to a worst-case value, there is no additional delay involved in synchronizing be-
tween instruction streams. Here, the maximum operating frequency of the system
remains unaltered. The choice of the variant is made in the re-scheduling phase
during compilation.

3.2.2  Placement of Barriers. The re-scheduling phase of the compiler backend
(see Section 3.1) can place barrier instructions to synchronize processors explic-
itly wherever necessary. However, it inserts local barriers within basic blocks and
global barriers at function calls. Global barriers beyond basic blocks are added
by a heuristic that avoids unintended overwriting of communication registers (in
the shared register file) and takes global memory dependences into account. Re-
scheduling is based on reconstruction of the DDG followed by a list scheduling of
each basic block. The selection heuristic was extended as illustrated in Figure 7:
When list scheduling selects a node u from the ready list, all successors v which are
executed on a processor other than u, will be marked with the barrier mask {u,v}.
In the example, the two right-most cases of use (grey and dark-grey) are marked
when the definition is extracted from the list.

barrier(s) needed

c data dependence graph (DDG)

corresponding ready list:
contains all operations that are not yet scheduled,
but whose predecessors are scheduled

highest A = lowest
priority priority
[alc]

priority
No barrier needed Barrier needed
before instruction before instruction

=
0
()
!

Fig. 7. Barrier Insertion by List Scheduling

Each time an instruction with a marker is selected, a barrier will be inserted
before this instruction. Such a barrier synchronizes the processors denoted by
the markers of the instructions in the ready list. Thus, the combination of the
barrier masks of all marked instructions is reduced to a single barrier, synchronizing
all relevant processors. Then, the markers are removed. Consequently, a barrier
between two dependent instructions v — v is always inserted after placing u and
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before placing v. In order to minimize the number of inserted barriers, marked
instructions are selected with a lower priority. Concretely, the existence of a marker
is used as a primary criterion, while the original criterion becomes the secondary
criterion. Hence, synchronization instructions are inserted as late as possible in
order to support coalescing of multiple barriers into fewer barriers.

3.3 Realization of Communication

Processor 1

A
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o
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o o
e
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Shared Memory v

Fig. 8. Register and Memory Access Times in QuadroCore

3.3.1 Shared Register File for Data Communication. A shared register file has
been introduced to ease the data exchange mechanism between the processors, as
shown in Figure 2. This shared register file consists of 32 registers, accessible by
all the processors via dedicated ports at all times. This set of registers is in ad-
dition to the 16-entry local register file that exists for each processor. Since there
are independent read and write ports for each processor, no hardware arbitration
mechanism is required for registers access, since the valid read-write sequences are
scheduled during compilation. This ensures a two clock cycle access time for read
or writes operations, enabled via special load and store instructions. As access
to the external memory for data exchange takes 6-15 clock cycles, it is not used
for communication. Hence, the round-trip time (write and read) is 4 clock-cycles
for the shared register file in comparison to 16 to 30 clock cycles using the shared
memory. Further, the compiler manages data dependency and read-write sequenc-
ing. A similar mechanism is added via instruction set extensions to allow sharing
(or broadcasting) the condition flag of one of the processors for collective branch
operations.
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Figure 8 shows the access times within the memory hierarchy of QuadroCore for
the current FPGA and standard cell implementations. The shared register file is
only used for inter-processor communication, because its access time is longer than
accessing the local registers of a processor. In order to utilize the shared registers
for all instructions the encoding of register operands would have to be extended to
store the additional register numbers. This would result in larger instructions, and
hence an increase in code size.

3.3.2  Placement of Communication Code. Figure 9 illustrates the basic princi-
ple of integrating copy instructions into the schedule in terms of the shared register
file. In the upper left corner of the picture, an excerpt of a DDG with three nodes
is shown. Obviously, the use node depends on the two def nodes. The right hand
data dependence is called a local dependence, because the participating nodes are
scheduled on the same processor. The left hand data dependence is denoted a
remote dependence, because the nodes are executed by different processors. Con-
sequently, communication code is needed to transport the value v defined by def
v from processor = to y where it is used by use v, w.

Vv, W register values

remote local
dependence dependence
CPU,  CPU,
CPU,  CPU, defv | defw
\
cstwv, o
defv | defw cldw v, 0
use v, w use v, w

Fig. 9. Integration of Communication code using Instruction Set Extensions

In order to reduce the communication effort, the CoBRA compiler aims at han-
dling as many remote dependencies as possible with one copy operation. For in-
stance, a broadcast communication is chosen automatically, if a value is used by
several processors. Furthermore, our placement strategy moves communication
code out of loops by determining the most suitable position in terms of execution
time. Concretely, we first identify all basic blocks which are located on all paths
from a definition to its uses and then select the basic block with lowest execution
frequency.

Our compiler uses the nesting depth of blocks as a static estimate. If there exists
multiple definitions for a register value, the placement strategy selects a basic block,
which is reached by as many definitions as possible. A performance comparison of
the communication using the shared register file and the external memory can be
found in Section 4.
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3.4 Realization of SIMD

Typical SIMD architectures, like the well-known vector machines or multimedia
extensions to general-purpose microprocessors [Hennessy and Patterson 2006], have
special vector registers. In the QuadroCore, each processor has a separate register
bank to store scalar values. Clearly, this architecture is only useful for the default
MIMD mode. In order to minimize the alterations of the existing architecture to
accommodate SIMD operations, the vector registers only exist conceptually. Let C
be the number of processors and R be the number of registers per processor. Then,
the j-th entry of the vector register r; is mapped to the register r; ; of processor
j,forie{0,...,R—1} and j € {0,...,C — 1}, as illustrated in Figure 10. These
registers r; ; for a certain ¢ and all j are denoted as homonymous registers.

DEC, DEC, DEC, DEC,
x
ve-e-[add |[mu |[ada | [t | -

Fig. 10. Functionality of Vector Registers in SIMD mode

Consequently, a single instruction with encoded register operand r; is executed
by all processors j with different values stored in their registers r; ;, respectively.
In the SIMD mode, a processor ¢ accesses memory data of word size w using c¢ * w
as an offset to a base address.

3.4.1 Vectorization and Register Allocation. CHARISMA (see Section 3.1) uti-
lizes the SLP approach [Larsen and Amarasinghe 2000] for vectorization (also char-
acterized briefly in Section 2.3). The fundamental idea of the SLP approach is
to identify adjacent memory accesses as an initial set of SIMD instructions. Fur-
ther vectorizable statements can be found by traversing the def-use/use-def chains
of the operands. According to [Larsen and Amarasinghe 2000], adjacency can be
determined using both alignment information [Larsen et al. 2000] and array anal-
ysis. Our adjacency module is based on an extension of Common Subexpression
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Elimination (CSE), that computes all expressions which only differ in constants of
address computations. Such constants are annotated at the intermediate nodes in
order to determine the adjacency afterwards. If a basic block contains both regular
and irregular structures, the SLP algorithm produces code consisting of both SIMD
and MIMD instructions. Finally, in order to reduce the overhead in reconfiguration,
the scheduler aims at maximizing contiguous sections executed in either SIMD or
MIMD mode.

As vector registers are mapped to multiple homonymous scalar registers in our
architecture, the register allocation has to arrange the register values accordingly:
At first, the virtual scalar registers used in SIMD mode are replaced by virtual
vector registers, which actually represents a certain combination of those scalar
registers. Then, transport instructions are inserted at the boundaries between
SIMD and MIMD code to arrange register values properly. Finally, the registers
are allocated using conventional techniques known from literature [Muchnik 1997].
We have developed a heuristic to place transport instructions efficiently, which takes
def-use/use-def chains into consideration.

3.4.2 Hardware Augmentation for SIMD Mode. When multiple processors ex-
ecute the same set of instructions for different data streams, the instruction fetch
and instruction decode stage of the processors are redundant for all the participat-
ing processors. The task of instruction fetch and decode can be administered by a
single processor. Hence, to support a single instruction stream to be executed on
all the four processors, the decoder allows forwarding of its control and data signals
from its instruction memory to all (or a subset of) the processors via the reconfig-
urable interconnect. The participating processors execute the same instruction as
long as they operate in this mode.

As directed by the reconfiguration instruction, one of the processors can switch to
a master mode and allow forwarding of the decoded instructions. The instruction
memory and the decoding units of all the other processors can be switched to an idle
mode. Further, when used in conjunction with instructions that allow fast access
to adjacent memory locations, the overhead involved in accessing data in external
memory is nullified. Depending on the application, one (or more) processor(s) can
operate in the ‘master’ mode. A subset of processors in a cluster can operate in
SIMD or MIMD mode of operation or in a combination of the two, simultaneously.
Although processors share the same instruction stream, the data stream remains
independent. Figure 11 shows the operation in SIMD mode, where processor 1
is the master processor and the instruction fetch and decode stages of processors
2, 3 and 4 are switched off. Memories make a significant impact on the total
power consumption, as also stated in [Lambrechts et al. 2005] and nearly 80% in
QuadroCore. The reduced instruction memory accesses and the unused decode
stages of the slave processor results in significant power savings.

Fast Access to Adjacent Memory Locations The external memory enables sharing of
data streams, and is accessible by all the processors via an arbitration mechanism.
When multiple processors access this external memory, a round robin arbitration
mechanism provides access in a sequential order. This procedure adds a significant
overhead to external memory accesses, which is essential in data-parallel applica-
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Fig. 11. QuadroCore in SIMD mode

tions. A significant bottleneck is introduced during simultaneous access to memory,
which is inevitable in a multiprocessor organization, especially in the SIMD mode.
To circumvent this bottleneck, fast access to adjacent memory locations is added
via instruction set extensions. Using this memory access mechanism, a single trans-
action is sufficient to read (or write) multiple data-memory locations, which may
represent consecutive locations of an array. This data read (or written) is then
distributed (or collected) internally among the four processors. These special in-
structions avoid the delay involved during arbitration and reduce the total memory
access time from a worst case of 15 clock cycles to exactly 7 clock cycles. Figure 8
shows the variations in the access time, based on the hierarchy of data access.

4. EXPERIMENTS AND PERFORMANCE ANALYSIS

In order to analyse the benefits of the presented architecture and design methodol-
ogy, it is necessary to verify both the functional and performance characteristics of
the architecture along with the compilation methodology. To validate the function-
ality of the QuadroCore architecture, the design was mapped on to our prototyping
environment. For performance analysis, the design has been mapped onto UMC’s
90nm standard cell technology. The compiler-driven reconfiguration has been val-
idated for a set of networking applications, both in terms of mode changes and
performance improvements. Additionally, the advantage of introducing this run-
time reconfiguration as a mechanism for power savings is analyzed for two large
data-parallel applications. The following sections present the set of experiments
and performance analysis reports.
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4.1 Prototype Implementation and Scalability

The choice of four processors in a cluster was a performance trade-off with respect
to the memory access overhead in case of simultaneous access and to address the
automatic extraction of parallelism. In [Fischer et al. 2003] it was demonstrated
that irregular parallelism can be best exploited using a small number of processors
(up to 4). However, the design description is parametric and can be scaled as per
application requirements. To ensure functional validation, the QuadroCore was
mapped onto a Xilinx Virtex2 XC2V6000 FPGA. The FPGA implementation has
an operating frequency of 12.5 MHz and occupies 58% of the slices and 53% of
the Block RAMs on a Virtex-IT 6000. The purpose of mapping QuadroCore on
the FPGA was to verify functional validation; hence, the design was optimized
such that the entire QuadroCore and one switch-box could be mapped on to a
single FPGA. For performance estimations in terms of timing, power and area, the
architecture was implemented on UMC’s 90nm standard cell technology.

As shown in Figure 12, the entire architecture can be replicated with intermediate
stages of switch boxes [Niemann et al. 2007]. Scalability is achieved via hierarchical
stages. In QuadroCore, sharing between processors is possible via a shared register
file, which is limited to 4 processors in the cluster. Beyond this stage, scalability is
achieved via introducing the network-on-chip inter-connectivity between the clus-
ters. Similarly, access to memory is enabled via multiple stages. The final stage is
the external memory coupled via high-speed-links to the individual switch boxes.
This level of hierarchy ensures access to large amounts of data, as per applica-
tion demands via high bandwidth interface to external memory. In contrast to the
automatic parallelization of applications mapped to the QuadroCore architecture,
manual partitioning is used across the NoC for applications exhibiting task-level
parallelism.

Multiple QuadroCore processors are interconnected via a network-on-chip as dis-
cussed in [Niemann et al. 2006]. Depending on the application-specific computa-
tional demands, the resource requirement can be scaled accordingly. To enable
accelerated prototyping, the entire architecture has been mapped to our scalable
rapid prototyping system, RAPTOR2000 [Porrmann et al. 2009]. Using this envi-
ronment, accelerated architectural prototyping for performance analysis of appli-
cations (described in C), is achieved. This experimental setup facilitates conve-
nient cycle-accurate performance estimations for large benchmarks. The presence
of this prototyping environment provides an accelerated mechanism to feedback
application-level performance estimates to alter the architectural dimensions.

4.2 Core Area and Performance Estimation

The architecture was synthesized in UMC’s 90 nm standard cell technology un-
der typical operating conditions, using Design Compiler from Synopsys. Table II
shows the variations in terms of maximum operating frequency (the clock period),
area, total dynamic power, and mW/MHz, comparing the original multiprocessor
core (both without memories) with the reconfigurable implementation. Since the
memory architecture is unaltered, it has not been included in the synthesis reports.
As seen from the results, the synthesized architecture shows an increase of about
14% in area. The area increase is mainly on account of the additional shared regis-
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Fig. 12. Scalable Architecture and Prototyping Environment

ter file (about 6%) and the additional instruction set extensions (about 4%). The
maximum operating frequency of the system is altered by about 3%, which is due
of the additional layer of interconnects in the critical path. The reduction in the
dynamic power (assuming 50% switching activity at the input) in comparison to
the original architecture is attributed to the reduction in operating frequency of
the reconfigurable multiprocessor. As observed in Table II, the mW /MHz ratio re-
mains almost constant for both architectures, justifying the low overhead incurred
on account of the reconfigurable capabilities. A more detailed power analysis is
made in Section 4.4.

Table II.  Standard Cell Synthesis Reports 4

Architecture Frequency Area Total Dynamic Power | mW / MHz
original 294 MHz | 0.41 sq mm 6.45 mW 0.0219
reconfigurable | 288 MHz | 0.48 sq mm 6.26 mW 0.0217

4.3 Instruction-level Parallelism

Experiments were performed using the parallelizing compiler on the standard cell
implementation of the QuadroCore reconfigurable multiprocessor architecture. The
synthesized gate-level netlist was simulated for accurate power estimations. The
current prototype implementation of the CoBRA compiler performs a fine-grained
parallelization on basic block level. The following sections present evaluations of

4Power reports include only the Processor Core
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performance comparison for the reconfigurable operating modes. For the initial
evaluation, excerpts of integer benchmarks from practical audio and video appli-
cations were chosen. These computational blocks constitute typical transcoding
algorithms for aggregation network access nodes.

convolution : Computes the discrete convolution of a 50 element array with a 16
element array.

fft : Represents the variable access pattern of a Fast Fourier Transformation with
two arrays of 16 elements each.

poly: Evaluates a polynomial of degree 16 with variable coefficients.

sharpening : Computes the image sharpening algorithm for images with dimen-
sion of 10x10 pixels.

14 - WASYNC
‘é 12 1 B SYNC
“5’ 10 A OASYNC + SYNC + SIMD
F o
©
E 4-
9
N N o
0 ’ T T T
convolution fft poly sharpening

Fig. 13. Performance Improvement Compared to a Single Processor

In the current prototype, the compiler selects between asynchronous, synchronous
or SIMD modes of operation for each basic block. The parallelization phase (see
Section 2.3) produces both a vectorized (SIMD) and a scheduled (MIMD) version
for the code of a basic block and selects the best result with respect to the estimated
runtime. As a block may not be fully vectorizable, the SLP vectorizer may also yield
some MIMD code and inserts reconfiguration instructions at the boundaries auto-
matically. The decision of switching between synchronous and asynchronous mode
is based on the inter-processor dependencies after parallelization (see Section 2.1).
The barrier instructions are inserted in the re-scheduling phase (see Section 3.2.2),
finally.

Run-time mode change is enabled via the presented single-cycle reconfiguration
mechanism. In this paper, we focus our comparisons to a single processor and a
cluster of four processors, nevertheless evaluations of the architecture with two, or
three processors can also be performed. In Figure 13, the speedups obtained for
the QuadroCore using the reconfigurable operating modes are shown, as compared
to a single N-Core. The speedup is the ratio of the total execution time on Quadro-
Core versus the corresponding time on a single N-Core. The calculations for a
single processor are solely for a single N-Core and do not include the overheads of
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interconnects etc. present in QuadroCore. In the plot, ASYNC corresponds to the
asynchronous MIMD mode, SYNC corresponds to the synchronous MIMD mode,
and ASYNC+SYNC+SIMD represents the combination of all the three modes, where
decision of switching between the modes made by the compiler in order to optimize
time. Additional timing analysis and execution time in each of the modes can be
found in [Hussmann et al. 2007]. Some execution modes cannot be used exclusively
for all parts of a given application. For instance, the SIMD mode is only applied
for data-parallel code instead of redundant execution of single instructions on all
processors when lacking of DLP. From the plot it can be seen that no single mode
of operation is a true winner for all the applications. This further emphasizes that
fixed hardware architecture with a single mode operation may not be best suited,
even within the same application domain. The results suggests that the perfor-
mance improvements depend on the type of the application and the corresponding
mode of operation. For convolution, there is very little change in performance is
noted between the various modes. However, for £ft the CoBRA compiler achieves
a significant improvement in performance by partitioning the algorithm onto four
processors. Parallelizing £ft yields a speed-up of 11, because the well-balanced
register need avoids spill-code in contrast to a single processor. For poly, the asyn-
chronous mode proves to be the most suited mode. In the case of sharpening, a
performance improvement is observed when the ASYNC+SYNC+SIMD mode is chosen
in. It must be noted, that the SIMD mode of operation also achieves power savings
(see Section 4.4) and reduced code size (up to 22%). These results confirm the
advantages of using the selected reconfigurable modes in our multiprocessor.

4.4  Power Savings via Reconfiguration in Data-parallel Applications

The MIMD mode of operation is the default mode, which is well suited for task-
parallel applications. To analyse the benefits of the SIMD (data-parallel) mode
of operation in terms for power, two computationally intensive applications that
exhibit data-level parallelism were chosen. For stages of the application where the
sequence of operations being executed on all the four processors are the same, a
switch is made to the SIMD mode, to save power. Hence, in the SIMD mode of
operation, a single instruction-fetch and decode results in four instructions being
executed on the individual processors on different data.

4.4.1 Multiplier in Elliptic Curve Cryptography. A finite field multiplication in
GF(2%3) used in Elliptic Curve Cryptography was chosen as a sample applica-
tion to evaluate the performance on the QuadroCore reconfigurable multiprocessor
architecture [Purnaprajna et al. 2008]. By applying the Karatsuba method iter-
atively, the multiplication of binary polynomials of degree 232 can be calculated
with 27 finite field multiplications at word-level. The word-level multiplications are
distributed among the four-processor QuadroCore architecture. Thus, four partial
products can be computed in parallel to allow collective computation of the final
results. Table III compares the variation in execution time for the application on a
single processor, using the QuadroCore in MIMD mode, and using MIMD—SIMD
reconfigurable mode in QuadroCore, for an operating frequency of 200 MHz. In
order to achieve power savings QuadroCore is predominantly operated in the SIMD
mode. As seen, a speedup of 3 has been observed in the MIMD mode of opera-
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tion and a speedup of 2.88 in the MIMD—SIMD mode, in comparison to a single
processor. Additionally, using the MIMD—SIMD results in power savings of 24%
in comparison to the MIMD mode. The power savings are due to the reduced
instruction fetches, and the subsequent reduction in instruction memory transac-
tions. A small change in speedup is encountered on account of the additional clock
cycles required to switch between the two modes, the resultant energy savings in
the MIMD—SIMD mode of 16% confirm the advantage of reconfiguration.

Table III. ECC: Performance variations with Operating Mode °

Operating Mode | Execution Cycles | Speedup | Power(mW) | Energy (uJ)
Single Processor 9311 1 20.38 0.949
MIMD 3077 3.03 64.64 0.994
MIMD-—SIMD 3237 2.88 49.51 0.801

4.4.2  Self Organizing Maps. As a second example, a neural network applica-
tion - Kohonen’s self-organizing map, which has been proven as a very effective
tool in data analysis and exploration of high dimensional datasets [Kohonen 1989],
was chosen. The algorithm involves executing the same set of operations on large
amounts of parallel data. The common set of operations was mapped to all the four
processors and data was distributed among all four processors. As the operations
executed on all the processors are the same, MIMD—SIMD mode, switches are in-
troduced wherever the control flow differs depending on the input data. Table IV
shows the variations in the execution time, power, and energy for the operation
in the single processor mode, the MIMD mode, and the MIMD—SIMD mode for
a sample problem size. As compared to a single processor, a speedup of 3.45 was
noted in the MIMD mode and of 3.41 in the MIMD—SIMD. The power savings
in the MIMD—SIMD mode is about 15% in comparison to the MIMD mode. The
resulting energy savings between the MIMD and MIMD—SIMD are 13%, which
validates the advantage of reconfiguration.

Table IV. SOM: Performance variations with Operating Mode ©

Operating Mode | Execution Cycles | Speedup | Power(mW) | Energy(uJ)
Single Processor 53,870 1 18.0 4.89
MIMD 15,608 3.45 52.0 4.05
MIMD—-SIMD 15,790 3.41 44.0 3.50

5Power reports include both the Processor Core and Memory
6Power reports include both the Processor Core and Memory
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5. CONCLUSION AND FUTURE WORK

We have presented a mechanism for introducing fast, run-time reconfiguration in our
QuadroCore multiprocessor that marginally alters the architecture of the original
legacy processors. A holistic evaluation of the reconfigurable QuadroCore multi-
processor is presented. The analyses show that, at the cost of about 14% increase
in area and about 3% decrease in the maximum frequency of operation, a maxi-
mum performance increase of about 11 times in terms of cycles of operation has
be achieved. The increase in area is mainly due to the shared register file, which
contributes to nearly 6% of the total area. Hence, the area overhead on account
of reconfiguration is small. Further, the instruction set architecture of the original
legacy processor was preserved and extensions were included to allow co-operative
multiprocessing.

As observed from the subset of audio and video processing computational building
blocks, alterations in terms of operating modes are required. Larger applications
usually combine multiple such computational blocks, where reconfiguring between
modes can be profitable. A typical example could be an aggregation network access
node (like DSL Access Multiplexers) where multimedia data is transcoded to suit
the customer’s equipment. Further, in [Dreesen et al. 2007], a scheme for dynamic
reconfiguration of the connections between processors and registers banks has been
reported. Ongoing work intends to extend this scheme of register reconfiguration
to the QuadroCore architecture. This would enable processors to borrow registers
from their neighbours in order to avoid spilling, which is costly in terms of time
and power.

Our scheme of reconfiguration has been used as a mechanism for power and
energy savings. Analysis in terms of power and energy for data-parallel applications
(Karatsuba’s multiplication and Self Organizing Maps) show power savings in the
range of 18-24% and energy savings of 16-26% via reconfiguration. These two
examples being a proof of concept, demonstrate applicability to most data-parallel
applications. As a next step, the impact of post-layout characteristics is presently
being analyzed.
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